23.02.2022 - European XFEL GmbH

Molekül-Schnappschuss durch Explosion

Wichtiger Schritt zum Filmen chemischer Reaktionen

Das Fotomotiv zur Explosion bringen, um ein Bild davon zu machen? Diese „rabiate“ Methode hat ein internationales Forschungsteam am weltgrößten Röntgenlaser European XFEL zum Ablichten größerer Moleküle benutzt. Mit Hilfe ultraheller Röntgenblitze konnten die Wissenschaftlerinnen und Wissenschaftler Bilder des Moleküls Iodpyridin in der Gasphase mit atomarer Auflösung aufnehmen. Bei dem Verfahren werden die Moleküle durch den Röntgenlaser zur Explosion gebracht, und aus den Trümmern wird das Bild rekonstruiert. „Dank der extrem intensiven und besonders kurzen Röntgenpulse des European XFEL konnten wir ein für diese Methode und Molekülgröße beispiellos klares Bild erzeugen“, berichtet Rebecca Boll von European XFEL, Initiatorin des Experiments und eine der beiden Erstautorinnen der Veröffentlichung, in der das Team seine Ergebnisse im Fachblatt „Nature Physics“ beschreibt. Solche deutlichen Abbildungen von größeren Molekülen waren mit der verwendeten Technik bislang nicht möglich.

Die Aufnahmen sind ein wichtiger Schritt hin zu Molekül-Filmen, mit denen Forscherinnen und Forscher in Zukunft mit hoher Auflösung Details von biochemischen, chemischen und physikalischen Reaktionen beobachten möchten. Von solchen Filmen werden neue Anstöße für Entwicklungen in verschiedenen Forschungsgebieten erwartet. „Die von uns verwendete Methode ist insbesondere zur Untersuchung photochemischer Prozesse interessant“, erklärt Till Jahnke von European XFEL, der ebenfalls zum Kernteam der Untersuchung zählt. Solche Vorgänge, bei denen chemische Reaktionen durch Licht ausgelöst werden, sind sowohl im Labor als auch in der Natur von großer Bedeutung, beispielsweise bei der Photosynthese oder beim Sehprozess im Auge. „Die Entwicklung solcher Filme ist zunächst Grundlagenforschung, aber die damit gewonnenen Erkenntnisse könnten in der Zukunft dazu beitragen, solche Prozesse besser zu verstehen und neue Ideen für die Medizin, nachhaltige Energiegewinnung oder Materialforschung zu entwickeln“, hofft Jahnke.

Bei der als Coulomb Explosion Imaging bezeichneten Methode schlägt ein hochintensiver und ultrakurzer Röntgenlaserpuls aus den Atomen des Moleküls zahlreiche Elektronen heraus. Zurück bleiben elektrisch positiv geladene Atome, die sich gegenseitig abstoßen. Durch die starke elektrostatische Abstoßung explodiert das Molekül innerhalb von wenigen Femtosekunden – das sind Millionstel einer Milliardstelsekunde. Die einzelnen Atome fliegen auseinander und werden von einem Detektor registriert.

Diese Technik soll Momentaufnahmen sehr schneller Prozesse ermöglichen. „Bislang war diese Methode allerdings begrenzt auf kleine Moleküle, die aus nicht mehr als fünf Atomen bestehen“, erläutert Julia Schäfer vom Center for Free-Electron Laser Science (CFEL) bei DESY, die andere Erstautorin der Studie. „Mit unserer Arbeit haben wir diese Grenze beim Coulomb Explosion Imaging durchbrochen.“ Iodpyridin (C5H4IN) ist ein Molekül aus elf Atomen.

Aufnahmestudio für die explosiven Molekülbilder ist die Experimentierstation SQS (Small Quantum Systems) am European XFEL. Hier lenken elektrische Felder in dem speziell für solche Untersuchungen entwickelten COLTRIMS-Reaktionsmikroskop die Molekültrümmer auf einen Detektor. Das Reaktionsmikroskop misst Einschlagort und Einschlagszeitpunkt der Bruchstücke auf dem Detektor und rekonstruiert daraus ihren Impuls – das Produkt aus Masse und Geschwindigkeit, sozusagen die „Wucht“, mit der sie auf den Detektor treffen. „Aus dieser Information lassen sich Details über das Molekül gewinnen und mit Hilfe von Modellen der Ablauf von Reaktionen und Vorgängen rekonstruieren“, sagt DESY-Forscher Robin Santra, der den theoretischen Teil der Arbeit geleitet hat.

Das Coulomb Explosion Imaging (CEI) eignet sich insbesondere auch dazu, sehr leichte Atome wie Wasserstoff in chemischen Reaktionen genau zu verfolgen. Die Technik ermöglicht detaillierte Untersuchungen einzelner Moleküle speziell in der Gasphase und ist damit eine weitere Methode zur Herstellung von Molekülfilmen, wie sie am European XFEL auch an anderen Experimentierstationen entwickelt werden, beispielsweise an Flüssigkeiten.

„Wir wollen fundamentale photochemische Prozesse im Detail verstehen. In der Gasphase gibt es keine Störungen durch andere Moleküle oder die Umgebung. Wir können daher mit unserer Technik einzelne, isolierte Moleküle untersuchen“, sagt Jahnke. Und Boll ergänzt: „Wir arbeiten bereits daran, im nächsten Schritt Reaktionsabläufe zu untersuchen und die Einzelbilder zu einem echten Molekülfilm zusammenzufügen. Die ersten Versuche dazu haben wir bereits unternommen.“

Fakten, Hintergründe, Dossiers
Mehr über European XFEL
  • News

    Momentaufnahmen von explodierendem Sauerstoff

    Seit mehr als 200 Jahren nutzen Menschen Röntgenstrahlen, um ins Innere der Materie zu schauen. Dabei dringen sie zu immer kleineren Strukturen vor – vom Kristall bis zum Nanopartikel. Jetzt ist Physikern der Goethe-Universität im Rahmen einer großen internationalen Kollaboration am Röntgen ... mehr

    Starre Bindungen für neue Smartphone-Datenspeicher

    Mit Hilfe von Phasenwechselmaterialien erreicht die neueste Generation von Smartphones höhere Speicherdichten und Energieeffizienz. Ein Wärmepuls ermöglicht es zwischen glasartigem und kristallinem Materialzustand umzuschalten und so Daten zu schreiben. Bisher war jedoch nicht bekannt, was ... mehr

    European XFEL nimmt zweite Röntgenlichtquelle in Betrieb

    Am größten Röntgenlaser der Welt, dem European XFEL in der Metropolregion Hamburg, ist jetzt die zweite Röntgenlichtquelle erfolgreich in Betrieb gegangen. Die Lichterzeugungsstrecke SASE3 erzeugte in einem der unterirdischen Tunnel erstmals Röntgen-Laserlichtblitze. SASE3 wird zwei weiter ... mehr

  • Verbände

    European XFEL GmbH

    In der Metropolregion Hamburg entsteht eine Forschungsanlage der Superlative: Der European XFEL erzeugt ultrakurze Laserlichtblitze im Röntgenbereich – 27 000-mal in der Sekunde und mit einer Leuchtstärke, die milliardenfach höher ist als die der besten Röntgenstrahlungsquellen herkömmliche ... mehr

Mehr über Deutsches Elektronen-Synchrotron DESY
  • News

    Express-Röntgenbilder von Mikrochips

    Eine neue Methode beschleunigt die Aufnahme von Röntgenbildern ausgedehnter Untersuchungsobjekte wie Mikrochips. Die innovative Technik ermöglicht es, relativ große Objekte in angemessener Zeit bis in den Nanometerbereich zu untersuchen. Das ist nicht nur für die Wissenschaft, sondern auch ... mehr

    Start-up Labs Bahrenfeld wachsen

    Der Hamburger Senat fördert die schnelle Erweiterung der Start-up Labs Bahrenfeld um 360 Quadratmeter mit 700.000 Euro. Insgesamt sollen auf dem DESY-Campus in unmittelbarer Nachbarschaft zu dem bestehenden Gebäude der Start-up Labs Bahrenfeld mindestens 25 Laborarbeitsplätze und 20 Büroarb ... mehr

    Quantentanz von Elektronen in Molekülen

    Einem internationalen Forschungsteam um DESY-Wissenschaftler Tim Laarmann ist es erstmals gelungen, die quantenmechanische Wanderung von Elektronen durch ein Molekül mit Echtzeitmessungen zu verfolgen. Die Beobachtungen mit DESYs brillantem Freie-Elektronen-Laser FLASH an einzelnen Moleküle ... mehr

  • Videos

    DESYs Röntgenlaser FLASH - High-Speed-Kamera für den Nanokosmos

    Wie arbeiten die Moleküle des Lebens? Wie funktionieren die Werkstoffe der Zukunft? Wie können wir effizienter Energie gewinnen und Ressourcen schonen? Fragen and FLASH, die High-Speed-Kamera für den Nanokosmos. mehr

    Teilchenzoo: Und nun?

    Mit dem extrem erfolgreichen Standardmodell der Teilchenphysik verstehen wir bislang nur rund 5% des Universums. Wie geht es weiter - Stringtheorie, Supersymmetrie, DESY-Physiker Georg Weiglein und Gudrid Moortgat-Pick diskutieren die großen offenen Fragen der Teilchenphysik. mehr

    Teilchenzoo: Photonen, Gluonen und andere Kräfteteilchen

    "Die vier Kräfte" - das ist kein Gericht aus dem Chinarestaurant, sondern das sind die vier Grundkräfte der Natur: die starke, die schwache, die elektromagnetische und die Schwerkraft. DESY-Doktorand Marc Wenskat erklärt ihre Wechselwirkungsteilchen und zeigt dabei, dass ein kleiner Magnet ... mehr