22.05.2023 - Max-Planck-Institut für Chemie

Feinstaub katalysiert oxidativen Stress in der Lunge

Neue Erkenntnisse zur gesundheitsschädigenden Wirkung von Luftverschmutzung

Laut einer neuen Studie eines Forschungsteams des Max-Planck-Instituts für Chemie (MPIC) sind die gesundheitsschädlichen Auswirkungen von Feinstaub eher auf die Umwandlung von Peroxiden in reaktivere Spezies wie Hydroxyl-Radikale (OH) zurückzuführen als auf direkte chemische Bildung von Wasserstoffperoxid (H2O2) wie bisher angenommen.

In der wissenschaftlichen Literatur wird die Gesamtproduktion reaktiver Sauerstoffspezies (ROS) wie etwa Wasserstoffperoxid (H2O2) häufig als Maß zur Abschätzung der Toxizität von Luftschadstoffen herangezogen. Ein Team von Forschenden unter Führung von Dr. Thomas Berkemeier am Max-Planck-Institut für Chemie in Mainz fand nun heraus, dass die Konzentrationen von ROS im Flüssigkeitsfilm des Lungenepithels (epithelial lining fluid, ELF) der menschlichen Atemwege hauptsächlich von der Freisetzung von endogenem H2O2 und der Einatmung von H2O2 aus der umgebenden Gasphase abhängig sind, während die chemische Produktion von H2O2 durch eingeatmeten Feinstaub eine geringere Bedeutung hat.

„Aufgrund unserer Modellrechnungen gehen wir davon aus, dass die Gesamtkonzentration dieser reaktiven Spezies in der Lunge ohnehin hoch ist, und nicht unmittelbar mit der Feinstaubbelastung zusammenhängt“, so Thomas Berkemeier, Leiter der Gruppe Chemische Kinetik und Reaktionsmechanismen am MPIC. Die Gruppe bedient sich eines Computermodells, um die ausschlaggebenden physikalischen, chemischen und biologischen Prozesse zu verstehen und die gesundheitsschädlichen Auswirkungen der verschiedenen Arten von Luftschadstoffen zu quantifizieren.

„Unser neues Modell simuliert die chemischen Reaktionen, die sich in den Atemwegen abspielen. Wir haben in unserem Computermodell erstmals die Produktion, Diffusion und den Verbrauch von Wasserstoffperoxid in den Zellen und der Blutbahn betrachtet. Es war eine ziemliche Herausforderung diese in biologischen Geweben ablaufenden Prozesse in präzise mathematische Gleichungen zu fassen“, erläutert Thomas Berkemeier.

Neue Forschungsansätze

„Die Erkenntnisse aus dieser Studie deuten darauf hin, dass die derzeitigen Ansätze zur Bewertung der unterschiedlichen Toxizität einzelner Feinstaub-Bestandteile einer kritischen Neubewertung unterzogen werden müssen“, so der Leiter der Abteilung Multiphasenchemie am MPIC, Prof. Dr. Ulrich Pöschl. Zu überdenken sei, ob die chemische Produktion von Superoxid und H2O2 in zellfreien Untersuchungsverfahren weiterhin eine gute Vergleichsgröße für die Bewertung gesundheitsschädlicher Bestandteile des Feinstaubs bleiben sollte. Wie die Studie zeigt, könnten manche Methoden zur Bestimmung des Oxidationspotenzials von Feinstaub deren Schadwirkung möglicherweise nicht korrekt erfassen.

Feinstaub aktiviert gesundheitsschädliche Prozesse in der Lunge  

Die Produktion von Hydroxyl-Radikalen (OH) hingegen war in den Modellrechnungen stark mit der Fenton-Chemie von Feinstaub korreliert. „Die Modellsimulationen deuten darauf hin, dass Feinstaub überwiegend durch Umwandlung von Peroxiden in hoch reaktive OH-Radikale wirkt. Das heißt, Feinstaub ist weniger der Treibstoff, sondern vielmehr der Katalysator der chemischen Reaktionen, die die Zellen und Gewebe schädigen“, beschreibt Thomas Berkemeier die Rolle der eingeatmeten Partikel im Modell. Außerdem könne Feinstaub die Produktion von Superoxid aus endogenen Quellen stimulieren, was zusätzlich zur gesundheitsschädlichen Wirkung von Luftverschmutzung beiträgt.

Die Studie unterstreiche die Wichtigkeit weiterer Forschung, um die chemischen Mechanismen besser zu verstehen, die den gesundheitsschädlichen Auswirkungen der Luftverschmutzung zugrunde liegen, so die Autoren der Studie. Veröffentlicht wurde die Studie in der Fachzeitschrift „Environmental Science: Atmospheres“.

Hintergrundinformationen

Luftverschmutzung führt zu hohen Gesundheitsrisiken, von denen weltweit Millionen von Menschen betroffen sind. Allerdings sind die zugrunde liegenden chemischen Mechanismen noch nicht vollständig verstanden. Feinstaub (PM2.5) enthält chemische Bestandteile, die Oxidationsreaktionen auslösen können. Werden diese Bestandteile eingeatmet und lagern sie sich in den menschlichen Atemwegen ab, können sie Kreisprozesse von Radikalreaktionen auslösen und am Laufen halten. Diese führen zur Produktion reaktiver Sauerstoffspezies (ROS) im Flüssigkeitsfilm des Lungenepithels (ELF), die die Atemwege und Alveolen der menschlichen Lunge bedecken. Zahlreiche Studien haben gezeigt, dass sehr hohe Konzentrationen von ROS wie bspw. Wasserstoffperoxid (H2O2) und Hydroxyl-Radikalen (OH) zu oxidativem Stress führen und damit Zellen und Gewebe der Atemwege schädigen können.

Fakten, Hintergründe, Dossiers
  • Lunge
  • oxidativer Stress
  • chemische Reaktionen
Mehr über MPI für Chemie
  • News

    Spiegelmoleküle verraten Trockenstress von Wäldern

    Weltweit geben Pflanzen etwa 100 Millionen Tonnen an Monoterpenen an die Atmosphäre ab. Zu diesen flüchtigen organischen Molekülen zählen viele Duftstoffe wie beispielsweise das Molekül Pinen, das für seinen frischen Kiefernduft bekannt ist. Da diese Moleküle sehr reaktiv sind und winzige A ... mehr

    Innenraumchemie neu denken

    Wir verbringen typischerweise 90 Prozent unserer Zeit in Innenräumen. Dort sind wir von einem unsichtbaren Molekülcocktail umgeben: Wände, Böden und Möbel gasen aus, beim Kochen oder Putzen entweichen chemische Stoffe in die Luft und je nach Umgebung gelangen auch Schadstoffe von außen nach ... mehr

    Sauberer Himmel durch Corona-Lockdown

    Während des ersten Lockdowns der Corona-Pandemie haben sich die Rußkonzentrationen in der Atmosphäre über West- und Südeuropa fast halbiert. Das geht aus dem Vergleich zweier Messkampagnen des deutschen Forschungsflugzeugs HALO von 2017 und 2020 hervor. Etwa 40 Prozent der Reduktion sei auf ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für Chemie

    Vorläufer unseres Instituts ist das Kaiser-Wilhelm-Institut für Chemie, das 1912 in Berlin-Dahlem eröffnet wurde. Es wurde 1949 in die Max-Planck-Gesellschaft übernommen und als Max-Planck-Institut für Chemie in Mainz neu aufgebaut. Zu Ehren Otto-Hahns trägt das Institut den Zweitnamen Otto ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Mit Ameisensäure zur CO₂-Neutralität

    Neue, synthetische Stoffwechselwege zur CO2-Fixierung könnten zukünftig nicht nur dazu beitragen, den CO2-Gehalt der Atmosphäre zu senken, sondern auch traditionelle Herstellungsverfahren für Pharmazeutika und Wirkstoffe durch kohlenstoffneutrale, biologische Prozesse ersetzen. Eine neue St ... mehr

    Mit Ammoniak zu grünem Stahl

    Die Stahlindustrie ist weltweit der größte einzelne Verursacher von CO2-Emissionen. Sieben Prozent beträgt ihr Anteil am weltweiten Treibhausgasausstoß. Und die Menge an produziertem Stahl dürfte der internationalen Energieagentur zufolge sogar von heute knapp zwei Milliarden Tonnen auf bis ... mehr

    Quallenähnliche Roboter könnten eines Tages die Weltmeere säubern

    Robotiker des Max-Planck-Instituts für Intelligente Systeme in Stuttgart haben einen von Quallen inspirierten Unterwasserroboter entwickelt, mit dem sie eines Tages Abfälle vom Meeresgrund aufsammeln wollen. Der nahezu geräuschlose Prototyp kann Objekte berührungslos unter seinem Körper ein ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • White Paper

    Die Keimzelle der Biobatterie

    Um überschüssigen Strom von Windkraft- und Solaranlagen aufzuheben sind leistungsfähige Batterien und Kondensatoren aus nachhaltigen Materialien gefragt. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr