09.11.2011 - Ruhr-Universität Bochum

Flexible Regalsysteme sortieren Moleküle

Wichtig für die Herstellung von Medikamenten

Ein flexibles und effizientes neues Verfahren zur Trennung von Enantiomeren haben Forscher des Karlsruher Instituts für Technologie (KIT) und der Ruhr-Universität Bochum (RUB) entwickelt. Die Enantiomerentrennung ist unerlässlich für die Herstellung vieler Medikamente. Bei ihrem Verfahren setzen die Wissenschaftler poröse molekulare Gerüststrukturen (MOFs) ein, die sie nach einer eigens entwickelten Methode schichtweise auf Festkörpersubstraten aufbauen.

Chiralität: linker und rechter Handschuh

Enantiomere sind paarweise auftretende, räumlich zueinander spiegelbildlich aufgebaute Moleküle. Sie unterscheiden sich voneinander wie ein linker und ein rechter Handschuh. Diese als Chiralität bezeichnete Eigenschaft von Molekülen spielt vor allem in den Biowissenschaften und der Pharmazie eine Rolle. „Während viele, besonders kleinere, Moleküle wie Kohlendioxid oder Methan nicht chiral sind, weisen zahlreiche biologisch relevante Moleküle, beispielsweise Weinsäure, diese Eigenschaft auf“, erklärt Professor Christof Wöll, Leiter des Instituts für Funktionelle Grenzflächen (IFG) des KIT. Für viele Medikamente ist nur eines der beiden Enantiomere erwünscht, damit die Wirkstoffmoleküle an bestimmte Strukturen im Körper andocken können.

Schnelles und kostengünstiges Verfahren

Gegenüber den bisher eingesetzten Methoden ermöglicht das von den Forschern um Professor Wöll, Professor Roland Fischer vom Lehrstuhl für Anorganische Chemie II der RUB und Humboldt-Stipendiat Bo Liu (KIT und RUB) entwickelte Verfahren eine schnellere und damit auch kostengünstigere Enantiomerentrennung. Es basiert auf neuartigen molekularen Gerüststrukturen (MOFs), die sich auf Festkörpersubstraten verankern lassen. Diese porösen Beschichtungen, auch als SURMOFs bezeichnet, entstehen durch ein von den Forschern eigens entwickeltes Epitaxieverfahren: Statt, wie sonst üblich, die aus den Ausgangsstoffen hergestellten Lösungsgemische zu erhitzen, werden modifizierte Substrate abwechselnd in die Lösungen der Ausgangsstoffe getaucht. „Auf diese Weise werden die molekularen Schichten etagenweise aufgebaut – vergleichbar mit einem Regalsystem“, erläutert Roland Fischer. Diese auf Oberflächen verankerten molekularen Regalsysteme lassen sich für verschiedene Anwendungen funktionalisieren.

Größere Maschen für pharmazeutische Wirkstoffe

Zur Enantiomerentrennung dienen chirale organische Moleküle als Verstrebungen der Regalsysteme. Dank ihrer homochiralen Struktur halten diese Beschichtungen jeweils eines der beiden Enantiomere fest. In der Zeitschrift „Angewandte Chemie“ beschreiben die Wissenschaftler die Trennung der enantiomeren Moleküle (2R, 5R)-2,5-Hexandiol (R-HDO) und (2S, 5S)-2,5-Hexandiol (S-HDO). Ziel weiterer Arbeiten ist, die Maschenweite der porösen Strukturen zu vergrößern, um das Verfahren auch für größere Moleküle zu testen, die als Medikamente eingesetzt werden. „Pharmazeutische Wirkstoffe sind mit Größen von zwei oder mehr Nanometern deutlich größer als Hexandiol. Die Entwicklung von oberflächenverankerten Netzwerke mit so großen Strukturen ist eine große Herausforderung“, erklärt Professor Wöll.

Enormes Potential für die Pharmaindustrie

Ein besonderer Vorteil der SURMOFs ist die Möglichkeit, die Effizienz der Enantiomerentrennung rasch und genau festzustellen. Mithilfe einer Quarzkristallwaage ließ sich zeigen, dass die oberflächenverankerten molekularen Gerüststrukturen schon jetzt hervorragende Trennleistungen erbringen. „Die SURMOFs besitzen als neues Material eine enormes Potential für die Pharmaindustrie“, so Professor Jürgen Hubbuch, Inhaber des Lehrstuhls für Molekulare Aufarbeitung von Bioprodukten (MAB) und Sprecher des KIT-Kompetenzfeldes Biotechnologie.

Fakten, Hintergründe, Dossiers
  • pharmazeutische Wirkstoffe
  • Chiralität
  • Ruhr-Universität Bochum
  • Hexandiol
Mehr über RUB
  • News

    Unerwartete Energiespeicherfähigkeit, wo Wasser auf Metall trifft

    Mit einer neuen Methode kann die elektrische Umladung von Grenzschichten zwischen sehr kleinen, metallischen Partikeln und wässrigen Lösungen gemessen und auf molekularer Ebene verstanden werden. Forschende des Exzellenzclusters RESOLV an der Ruhr-Universität Bochum (RUB) haben mit Strom- u ... mehr

    Eine Schatzkarte für das Reich der Elektrokatalysatoren

    In Materialien, die aus fünf oder mehr Elementen zusammengesetzt sind, liegen effiziente Elektrokatalysatoren verborgen, die zum Beispiel für die Erzeugung von grünem Wasserstoff gebraucht werden. Ein Team der Ruhr-Universität Bochum (RUB) und der Universität Kopenhagen hat eine effiziente ... mehr

    Katalysatoroberfläche mit atomarer Auflösung analysiert

    So detailliert sind Katalysatoroberflächen selten zuvor abgebildet worden. Dabei kann jedes einzelne Atom entscheidend für die katalytische Aktivität sein. Mit atomarer Auflösung hat ein deutsch-chinesisches Forschungsteam die dreidimensionale Struktur der Oberfläche von Katalysator-Nanopar ... mehr

  • q&more Artikel

    Maßgeschneiderte Liganden eröffnen neue Reaktionswege

    Zum ersten Mal konnte ein effizienter Katalysator für die palladiumkatalysierten C–C-Bindungs-knüpfungen zwischen Arylchloriden und Alkyllithium-Verbindungen gefunden werden. Diese Reaktion ermöglicht einfachere Synthesewege für wichtige Produkte. mehr

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Henning Steinert

    Henning Steinert, Jahrgang 1993, studierte an der Carl‑von‑Ossietzky Universität Oldenburg Chemie, wo er sich unter anderem mit der Aktivierung von Si–H-Bindungen an Titankomplexen beschäftigte. Aktuell promoviert er an der Ruhr-Universität Bochum am Lehrstuhl für Anorganische Chemie II von ... mehr

    Prof. Dr. Viktoria Däschlein-Gessner

    Viktoria Däschlein-Gessner, Jahrgang 1982, studierte Chemie an den Universitäten Marburg und Würzburg und promovierte im Jahr 2009 an der TU Dortmund. Nach einem Postdoc-Aufenthalt an der University of California in Berkeley (USA) leitete sie eine Emmy-Noether-Nachwuchsgruppe an der Univers ... mehr

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr

Mehr über KIT
  • News

    3-D-Laser-Nanodrucker als kleines Tischgerät

    Die Laser in heutigen Laserdruckern für Papierausdrucke sind winzig klein. Bei 3-D-Laserdruckern, die dreidimensionale Mikro- und Nanostrukturen drucken, sind dagegen bisher große und kostspielige Lasersysteme notwendig. Forschende am Karlsruher Institut für Technologie (KIT) und an der Uni ... mehr

    Simultankonzept beschleunigt Elektrodenherstellung

    Ein innovatives Konzept für die simultane Beschichtung und Trocknung zweilagiger Elektroden haben Forscher am Karlsruher Institut für Technologie (KIT) entwickelt und erfolgreich angewendet. Dadurch gelingt es, Trocknungszeiten auf unter 20 Sekunden zu verkürzen, was gegenüber dem derzeitig ... mehr

    BASF und KIT erforschen gemeinsam in einem öffentlich geförderten Projekt die Möglichkeiten von mehrschichtigen Anoden für Lithium-Ionen-Batterien

    Elektromobilität ist weltweit als entscheidender Faktor anerkannt, um Klimaneutralität zu erreichen. Leistungsstarke Lithium-Ionen-Batterien für Elektrofahrzeuge spielen hierbei eine Schlüsselrolle. BASF ist ein führender Akteur auf dem Markt für Batteriematerialien mit Fokus auf hochleistu ... mehr

  • Videos

    Bioliq: Energiegewinnung aus Reststoffen – komplette Prozesskette läuft

    Die bioliq®-Pilotanlage am Karlsruher Institut für Technologie (KIT) läuft erfolgreich über die gesamte Prozesskette. Alle Stufen des Verfahrens sind nun miteinander verbunden: Schnellpyrolyse, Hochdruck-Flugstromvergasung, Heißgasreinigung und Synthese. Durch bioliq® wird Restbiomasse in u ... mehr

    Sicherheit von Lithium-Ionen-Batterien erhöhen

    Lithium-Batterien sollten bei Transport, Montage und im Betrieb wirklich sicher sein. KIT-Wissenschaftler erklären, welche Faktoren dazu beitragen, die Sicherheit von Lithium-Ionen-Batterien zu erhöhen. mehr

    Kleben wie ein Gecko: selbstreinigend und haftsicher

    Geckos haben Klebestreifen eines voraus: Selbst nach wiederholtem Kontakt mit Schmutz und Staub kleben ihre Füße noch auf glatten Flächen einwandfrei. Forscher des KIT und der Carnegie Mellon Universität in Pittsburgh haben nun den ersten Klebstreifen entwickelt, der nicht nur genauso hafts ... mehr

  • Forschungsinstitute

    Institut für Funktionelle Grenzflächen (IFG) am Karlsruher Institut für Technologie (KIT)

    Forschungsgegenstand des Instituts für Funktionelle Grenzflächen (IFG) ist das Studium molekularer Interaktionen an fest/gas und fest/flüssig Grenzflächen. Aus der Untersuchung von Grundlagenprozessen auf der Nano-Ebene gewonnene Erkenntnisse werden konsequent auf die Makro-Ebene technische ... mehr

    Karlsruher Institut für Technologie (KIT)

    Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts und staatliche Einrichtung des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das ... mehr

  • q&more Artikel

    Analytische Quantifizierung von Gluten in Lebensmitteln

    Der Gesetzgebung zufolge dürfen Lebensmittel, die mit einem Glutenfrei-Symbol versehen sind, nicht mehr als 20 mg Gluten pro Kilogramm enthalten, was für Zöliakie-Betroffene aus gesundheitlichen Gründen lebenswichtig ist. mehr

    Bewertung der Lungentoxizität von Luftschadstoffen

    Die aktuellen Diskussionen zu Fahrverboten in europäischen Städten zeigen einerseits den hohen Stellenwert, den die Bevölkerung der Luftqualität zumisst, und andererseits den Mangel an Methoden, die von Luftschadstoffen ausgehende Beeinträchtigung der menschlichen Gesundheit direkt zu bewerten. mehr

    Biochemie in der Mikrowelle

    Die Entwicklung neuer Pharmazeutika beruht auf dem zunehmenden Verständnis intrazellulärer Vorgänge. Insbesondere durch die Erforschung von Ligand-Rezeptor-Wechselwirkungen können Wirkstoffe ­besser angepasst werden. Um Medikamente an ihren Wirkungsort ­zu bringen, werden sog. „Carrier“-Mol ... mehr

  • Autoren

    Prof. Dr. Katharina Scherf

    Katharina Scherf, Jahrgang 1985, studierte Lebensmittelchemie an der Technischen Universität München (TUM). Ihre Promotion und Habilitation erwarb sie ebenfalls an der TUM und war als leitende Wissenschaftlerin am Leibniz-Institut für Lebensmittel-Systembiologie an der TUM tätig. 2019 wurde ... mehr

    Majlinda Xhaferaj

    Majlinda Xhaferaj, Jahrgang 1992, schloss ihr Lebensmittelchemiestudium im Jahr 2018 am Karlsruher Institut für Technologie (KIT) ab. Seit 2019 ist sie Doktorandin in der Abteilung für Bioaktive und Funktionelle Lebensmittelinhaltsstoffe mit dem Schwerpunkt der Glutenanalytik zur Verbesseru ... mehr

    Dipl. Ing. Sonja Mülhopt

    Sonja Mülhopt erwarb 2000 ihr Diplom für Maschinenbau an der Berufsakademie (heute DHBW) Mannheim. Die begleitende Ausbildung durchlief sie am Forschungszentrum Karlsruhe, dem heutigen Karlsruher Institut für Technologie (KIT). 2014 erhielt sie den Master of Science für Chemieingenieurwesen ... mehr