Getrennt, aber gemeinsam

Kern-Schale-Photokatalysator mit räumlich getrennten Cokatalysatoren für eine effektivere Wasserspaltung

18.09.2013 - Japan

Die photokatalytische Wasserspaltung nutzt Sonnenlicht, um Wasser in Wasserstoff und Sauerstoff zu spalten. Sie ist eine umweltfreundliche Methode zur Wasserstofferzeugung für Brennstoffzellen. Japanische Forscher stellen in der Zeitschrift Angewandte Chemie jetzt eine neue Methode vor, mit der sich effektivere Photokatalysatoren herstellen lassen. Es handelt sich dabei um winzige Hohlkugeln, die innen und außen mit verschiedenen Cokatalysatoren beschichtet sind.

Bei der photokatalytischen Wasserspaltung fängt der Katalysator, meist ein Halbleiter, Photonen ein. Elektronen werden angeregt und aus dem Valenzband ins Leitungsband gehoben. Im Valenzband hinterlassen die Elektronen Leerstellen, die als positiv geladene „Löcher“ betrachtet werden. Schaffen es Elektronen und Löcher, zur Oberfläche des Katalysators zu wandern, bevor die entgegengesetzten Ladungen wieder rekombinieren, können sie auf Wassermoleküle übertragen und genutzt werden, um Wasser zu Wasserstoff zu reduzieren oder zu Sauerstoff zu oxidieren.

Immer wieder neue Katalysatorsysteme wurden untersucht und entwickelt, bisher war deren Effektivität jedoch noch nicht zufriedenstellend. Rein theoretisch sollten Katalysatoren auf der Basis von Tantalnitrid (Ta3N5) besonders geeignete Kandidaten für eine Photokatalyse mit sichtbarem Licht sein. Zwei Hauptprobleme haben den Erfolg in der Praxis bisher aber verhindert: Zum einen reagieren die entstehenden Produkte, Sauerstoff und Wasserstoff, auf der Oberfläche des Katalysators gleich wieder zurück zu Wasser. Zum anderen klappt es nicht recht mit der Ladungstrennung der bei der Reaktion entstehenden Elektronen und Löcher, die zu rasch wieder rekombinieren.

Cokatalysatoren sollen die Leistungsfähigkeit verbessern, indem sie Elektronen oder Löcher einfangen und auf das Wasser übertragen. Edelmetalle wie Platin können den Teilschritt der Reduktion zu Wasserstoff verbessern, Metalloxide wie Iridium- und Kobaltoxid die Oxidation zu Sauerstoff. Das Bestücken von Photokatalysatoren mit beiden Sorten von Cokatalysatoren brachte aber noch keinen durchschlagenden Erfolg.

Das Team um Kazunari Domen von der Universität Tokio hatte nun eine clevere Idee: Was, wenn die beiden Cokatalysatoren nicht gleichmäßig über den Katalysator verteilt wären, sondern räumlich getrennt? Um dies zu erreichen, entwickelten die Forscher eine einfache Methode zur Herstellung von Kern-Schale-Mikropartikeln. Zunächst beschichteten sie Siliciumdioxid-Mikrokügelchen mit Platinnanopartikeln und anschließend mit Tantaloxid, das sie im nächsten Schritt mit Ammoniak zu Tantalnitrid umsetzten und dann mit Iridium- oder Kobaltoxid umhüllten. Der Siliciumdioxid-Kern kann selektiv herausgelöst werden. Übrig bleiben hauchdünne poröse Hohlkugeln aus Tantalnitrid, die innen mit Platinnanopartikeln, außen mit Iridium- oder Kobaltoxid beschichtet sind. Dank dieses speziellen Aufbaus finden die beiden Teilreaktionen nicht mehr in unmittelbarer Nähe statt, wodurch sich die Ladungstrennung und damit die photokatalytische Aktivität deutlich verbessern.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Entdecken Sie die neuesten Entwicklungen in der Batterietechnologie!