01.12.2015 - Max-Planck-Institut für biophysikalische Chemie

Warum Wasserstoffatome an Metalle binden

Katalysatoren moderner Autos sorgen für sauberere Luft: Sie wandeln giftige Abgasbestandteile von Benzin- oder Dieselmotoren in Gase um, die für die Natur unschädlich sind. Die zugrundeliegenden chemischen Reaktionen werden dabei von bestimmten Edelmetallen vermittelt, die auf die Oberfläche eines Keramikkörpers aufgebracht werden. Solche katalytischen Reaktionen an Oberflächen sind allerdings äußerst komplex, denn sie erfordern eine Vielzahl elementarer Schritte. Vorherzusagen, welche Verbindungen katalytisch gut wirksam sind, bleibt daher äußerst schwierig. Das Team um die Physiko-Chemiker Oliver Bünermann und Alec Wodtke hat jetzt aufgeklärt, warum Wasserstoffatome an Metalle binden. Die Forscher sind dem Ziel, Reaktionen an Oberflächen im Detail zu verstehen, damit einen großen Schritt nähergekommen. Ihre Ergebnisse könnten zukünftig dazu beitragen, katalytische Vorgänge wie die Abgasentgiftung weiter zu verbessern und neue katalytisch einsetzbare Stoffe zu identifizieren.

Man stelle sich vor, ein geübter Billardspieler stößt einen Tischtennisball gegen eine Billardkugel. Jeder von uns weiß intuitiv, was dann passiert: Der Tischtennisball springt von der Billardkugel zurück, die Kugel selbst bleibt bewegungslos liegen. Die Ursache dafür ist der große Masseunterschied zwischen den beiden. Er verhindert, dass der kleine Tischtennisball seine Bewegungsenergie wirksam auf die schwerere Billardkugel übertragen kann.

Überträgt man das Spiel der Bälle am Billardtisch auf Atome in einem chemischen Experiment, beobachten Forscher allerdings überraschende Unterschiede: Anders als ein Tischtennisball springt das leichtere Atom nicht in allen Fällen zurück, sondern bleibt manchmal am schwereren Partner kleben. Diese Haftung von Atomen macht chemische Reaktionen an Oberflächen überhaupt erst möglich. Doch warum verhalten sich Atome völlig anders als die gespielten Bälle?

Die Ursache, warum Atome an manchen Oberflächen „kleben“ bleiben, hat jetzt ein Forscherteam um Oliver Bünermann, Leiter der Gruppe Atom-Surface Scattering Dynamics an der Universität Göttingen, und Alec Wodtke, Direktor am Max-Planck-Institut (MPI) für biophysikalische Chemie und Professor am Institut für Physikalische Chemie an der Universität Göttingen, in einem aufwändigen Experiment aufgeklärt.

Um zu verstehen, wie die Haftung von Atomen an Oberflächen grundsätzlich funktioniert, untersuchten die Göttinger Wissenschaftler den theoretisch einfachsten Fall: wie sich Wasserstoffatome an verschiedenen Oberflächen verhalten. „Dazu haben wir Wasserstoffatome mit genau bekannter Geschwindigkeit auf eine Gold- und eine Xenon-Oberfläche geschossen. Beide Elemente haben völlig unterschiedliche Eigenschaften: Gold ist ein elektrischer Leiter, der freie Elektronen besitzt. Das Edelgas Xenon dagegen ist ein Isolator ohne freie Elektronen“, erläutert Wodtke. Anschließend maßen die Forscher, mit welcher Geschwindigkeit die Atome zurückprallten und berechneten aus dem Geschwindigkeitsunterschied, wie viel Energie vom Wasserstoffatom auf die Oberfläche übertragen worden war.

„Wasserstoff- und Xenonatome haben sich in unserem Experiment ganz ähnlich verhalten wie der Tischtennisball und die Billardkugel. Die Wasserstoffatome prallten von den sehr viel schwereren Xenonatomen ab und verloren fast keine Energie im Stoß. Ganz anders dagegen verhielten sich die Wasserstoffatome, wenn sie auf schwerere Goldatome geschossen wurden. Sie verloren einen großen Teil ihrer Energie“, erzählt Bünermann, Erstautor der jetzt im Wissenschaftsjournal Science veröffentlichten Publikation. „Des Rätsels Lösung ist, dass Gold – im Gegensatz zu Xenon – freie Elektronen hat. Sie wirken wie eine zähe Flüssigkeit auf die Wasserstoffatome und bremsen sie ab“, so der Physico-Chemiker.

Der technische Aufwand für dieses Experiment war enorm. „Vier genau aufeinander abgestimmte Laser und eine komplexe Ultra-Hochvakuum-Kammer waren dafür erforderlich“, erklärt Bünermann. Um das bei Raumtemperatur gasförmige Xenon in einen festen Zustand zu bringen, mussten die Forscher die Versuchstemperatur zudem auf 45 Kelvin (minus 228 °Celsius) absenken. „Dieses aufwändige Experiment zu realisieren, war tatsächlich erst hier am Göttingen Campus möglich – nicht nur wegen des großartigen wissenschaftlichen Umfelds hier vor Ort, sondern auch dank der hervorragenden technischen Mitarbeiter in den Werkstätten am MPI für biophysikalische Chemie und an der Universität Göttingen. Alle Apparaturen wurden hier in Göttingen entwickelt“, so Wodtke. Auch zwei Doktorandinnen und ein Doktorand verhalfen den Arbeiten zum Erfolg. Yvonne Dorenkamp und Hongyan Jiang trugen wesentliche experimentelle Daten bei, in der Theorie lieferte Svenja Janke eine ganz neue Betrachtung des Prozesses, die entscheidend für die experimentelle Auswertung war.

Die Erkenntnisse der Wissenschaftler sind ein wichtiger Schritt, um im Detail zu verstehen, wie chemische Reaktionen an Oberflächen ablaufen. „Unser Experiment liefert wertvolle Daten, um neue theoretische Ansätze zu überprüfen und weiterzuentwickeln. Sie sind ein wesentlicher Beitrag hin zu einer Theorie, mit der zukünftig katalytische Vorgänge optimiert und neue katalytisch wirksame Verbindungen identifiziert werden könnten“, so Alexander Kandratsenka, Leiter der Gruppe First Principles Simulations of Molecule-Surface Dynamics am MPI für biophysikalische Chemie.

Fakten, Hintergründe, Dossiers
  • Katalyse
  • Georg-August-Univer…
  • MPI für biophysikal…
Mehr über MPI für biophysikalische Chemie
Mehr über Uni Göttingen
  • News

    Wie Stickstoff per Katalysator übertragen wird

    Metallkatalysatoren können Stickstoff auf organische Moleküle übertragen. Bei solchen Reaktionen treten kurzlebige Verbindungen auf, deren Funktion für die Produktbildung durch die chemische Bindung von Metall und Stickstoff maßgeblich bestimmt wird. Die Struktur und chemische Bindung eines ... mehr

    Neue Strategie reduziert chemischen Abfall bei der Medikamentenproduktion

    Um Medikamente gezielt weiter entwickeln zu können, werden bislang aufwendige Verfahren eingesetzt, die nicht nur teuer sind, sondern auch eine große Menge unerwünschter Abfallprodukte erzeugen. Wissenschaftlern unter Leitung der Universität Göttingen ist es jetzt gelungen, eine ressourcens ... mehr

    „Flüstergalerie“-Effekt steuert Elektronenstrahlen mit Licht

    Wird in einer der Galerien der St. Paul‘s Cathedral in London leise gesprochen, können dennoch viele andere Besucher mithören: Der Schall wird kreisförmig um den Dom weitergetragen und ist entlang der Mauern überall gleich gut zu hören. Dieses besondere Phänomen wird als „Flüstergalerie“-Ef ... mehr

  • Autoren

    Prof. Dr. Gerhard H. Braus

    Gerhard H. Braus, geb. 1957, studierte Biologie und Philosophie an der Albert-Ludwigs-Universität in Freiburg im Breisgau. Promotion (1987) und Habilitation (1992) erfolgten an der Eidgenössischen Technischen Hochschule (ETH) in Zürich. 1993 folgte er einem Ruf auf eine C3-Professur für Bio ... mehr

    Dr. Jennifer Gerke

    Jennifer Gerke, geb. 1982, studierte Chemie an der Georg-August-Universität Göttingen. Ihre Diplomarbeit befasste sich mit der Isolierung und Strukturaufklärung von Sekundärmetaboliten aus marinen Actinomyceten. Anschließend wechselte sie an das Institut für Mikrobiologie und Genetik, wo si ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Topologie wird magnetisch: Die neue Vielfalt topologischer magnetischer Materialien

    Die elektronische Struktur unmagnetischer Kristalle lässt sich mit Hilfe vollständiger Theorien der Band-Topologie klassifizieren, was zu einer Art „topologischem Periodensystem“ führt. Eine analoge Klassifikation magnetischer Materialien war bisher jedoch nicht möglich, und daher wurden nu ... mehr

    Metallische Substrate helfen molekularem Quantenschalter

    Die Quantendynamik von Wasserstoff ist für viele Probleme in der Natur von zentraler Bedeutung, da sie stark von ihrer Umgebung beeinflusst wird. In einem gerade veröffentlichten Beitrag im Journal PRL befassen sich Mitglieder der Lise Meitner Gruppe am MPSD mit dem Wasserstofftransfer inne ... mehr

    Zelluläres Kraftwerk recycelt Industrie-Abgase

    Kohlenmonoxid ist ein hochgiftiges Gas. Menschen sterben innerhalb weniger Minuten, wenn sie es einatmen. Trotzdem gibt es Bakterien, die Kohlenmonoxid nicht nur widerstehen können, sie verwenden es sogar zum Atmen und zur Vermehrung. Erkenntnisse darüber, wie diese Bakterien überleben, öff ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • White Paper

    Die Keimzelle der Biobatterie

    Um überschüssigen Strom von Windkraft- und Solaranlagen aufzuheben sind leistungsfähige Batterien und Kondensatoren aus nachhaltigen Materialien gefragt. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr