10.05.2016 - Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik (IGB)

Prozessanalysen in Echtzeit

Mit einem von Fraunhofer-Wissenschaftlern entwickelten Echtzeit-Massenspektrometer ist es erstmals möglich, bis zu 30 Bestandteile gleichzeitig aus der Gasphase und einer Flüssigkeit zu analysieren – auch in situ. Das empfindliche Messsystem eignet sich damit auch für die automatisierte Überwachung und Steuerung von chemischen Reaktionen und biotechnologischen Prozessen.

Für die Überwachung von Herstellungsverfahren ist der automatisierte Nachweis von Produkten oder Nebenprodukten direkt im Prozess nicht mehr wegzudenken. Ein schnelles und selektives Verfahren, um Verbindungen in technischen, chemischen und biotechnischen Anwendungen sehr empfindlich und gleichzeitig über einen extrem großen Messbereich zu analysieren, ist die Massenspektrometrie. Neben der Identifizierung von Verbindungen ist es mit dieser Methode auch möglich, die Ionenströme quantitativ auszuwerten. Über eine integrierte Datenauswertung können so Konzentrationen der zu überwachenden Stoffe ermittelt und Konzentrationsänderungen, beispielsweise bei chemischen oder biochemischen Reaktionen, erfasst werden.

Bisher war in der Prozess-Massenspektrometrie der Nachweis allerdings auf Verbindungen aus der Gasphase beschränkt. Nun haben Forscher der Fraunhofer-Institute für Chemische Technologie ICT, Pfinztal, und Grenzflächen- und Bioverfahrenstechnik IGB, Stuttgart, ein Massenspektrometer entwickelt, mit dem gleichzeitig sowohl Gase als auch Flüssigkeiten in Echtzeit überwacht werden können.

Multi-Einlass mit Membran

Kernstück des neuartigen, patentierten Messsystems foxySPEC ist ein modifizierter, als Bypass angelegter Einlass zur Analysatoreinheit, mit dem auch Komponenten aus der Flüssigphase analysiert werden können. An diesem Einlass ist eine mikroporöse Membran angebracht. »Angetrieben durch den Unterdruck auf der Permeatseite verdampfen flüchtige Substanzen aus der flüssigen Probe und passieren die Membran«, erläutert Martin Joos vom Fraunhofer ICT. Für polare, wässrige Lösungen dagegen ist die Membran undurchlässig. Ihre spezielle räumliche Struktur macht sie zudem unempfindlich gegen Verstopfung durch Feststoffe.

Darüber hinaus wird mit einem neu entwickelten Messfühler sogar die In-situ-Analyse von Flüssigkeiten, beispielsweise in Fermentern bei biotechnologischen Herstellungsprozessen möglich. »In diesem Fall befindet sich die Membran, in den Messfühler integriert, direkt im Inneren des zu überwachenden Reaktors«, beschreibt der Verfahrensingenieur Matthias Stier vom Fraunhofer IGB den Vorteil. Aufgrund des physikalischen Phasentransfers in der chemisch inerten Membran zeigen beide Membran-Einlasssysteme keine Querempfindlichkeit und sind sehr langzeitstabil. Die neuen Membran-Einlässe sind zusätzlich zu herkömmlichen Gaseinlässen installiert.

Automatisierte Steuerung für Analysen in Echtzeit

Welcher Einlass vom Probennehmer angesteuert wird, kann der Anwender an der Steuerungseinheit einstellen. »Die von uns entwickelte Siemens-Programmierung erlaubt, die Probenführung über entsprechende Ventile innerhalb von Sekunden beliebig zwischen Gas-, Flüssig- und In-situ-Analyse umzuschalten und liefert damit Ergebnisse in Echtzeit«, führt IGB-Ingenieur Stephan Scherle aus. Zudem ist das verwendete Quadrupol-Massenspektrometer mit einer Auto-Kalibrierung ausgestattet, sodass simultan bis zu 30 Komponenten im Stoffgemisch – ohne vorherige Trennung – bestimmt werden können.

Vielfältige Einsatzgebiete

Die Nachweisgrenzen des foxySPEC liegen dabei unter 10 µg Substanz pro Liter und somit im unteren ppm-Bereich. Da die Gase über Edelstahlleitungen in das Vakuumsystem der Nachweiseinheit angesaugt werden, sind Entfernungen von über 10 Metern zur Probenahmestelle möglich, ein aufwändiges Pumpen der Proben entfällt. Je nach Auslegung von Länge und Durchmesser der Edelstahlkapillaren können Gase in Echtzeit im Vakuum bis zu 1 mbar oder bei Überdruck bis zu 100 bar gemessen werden.

Das Echtzeit-Massenspektrometer ist für den vielfältigen Einsatz in Chemie und Biotechnologie, Pharmazie und Lebensmittelherstellung geeignet und soll branchenspezifisch weiterentwickelt werden.

Geeignet für Industrie 4.0

Die niedrige Nachweisgrenze, die Möglichkeit mehrere Komponenten gleichzeitig zu messen und die hohe Geschwindigkeit, mit der Daten erzeugt werden, bieten ideale Voraussetzungen, um auf der Grundlage einer kontinuierlichen Überwachung Prozesse effizienterer zu gestalten. Im Sinne der Plattform »Industrie 4.0« können die Daten in Echtzeit über intelligente Programme ausgewertet werden, um auf weitere, bisher nicht beachtete Parameter in Prozessen zu schließen und damit die Produktion weiter zu optimieren und zu beschleunigen. Da das foxySPEC alle Massen detektiert, die in die Messeinheit gelangen, ist das Gerät nicht nur auf einen Stoff beschränkt, wie es bei den meisten Sensoren der Fall ist. Damit lässt sich das foxySPEC flexibel einsetzen und ist das ideale Messgerät für eine nachfrageorientierte Produktion. »Werden in einer Anlage je nach Kundenwunsch verschiedene Produkte hergestellt, kann das foxySPEC ohne jeglichen Umbau oder Anpassung direkt als Messgerät weiterverwendet werden«, so Matthias Stier.

Ausgründung und Vertriebsidee

Fraunhofer Venture fördert die Vorbereitung einer Ausgründung für die Herstellung, den Vertrieb und die Fernwartung des Echtzeit-Prozessmassenspektrometers foxySPEC mit Geldern aus dem Programm »Fraunhofer fördert Entrepreneure«. Das in diesem Rahmen erstellte Verwertungskonzept sieht vor, dass foxySPEC eine selbstentwickelte Connect-Box erhält, das die Fernwartung des Geräts ermöglicht. Der Anwender muss somit kein Experte im Bereich der Massenspektrometrie sein.

foxySPEC soll über ein B2B-Modell vertrieben werden. Derzeit suchen die Fraunhofer-Entwickler Distributionspartner, die foxySPEC als Teil ihres eigenen Systems – in einer sogenannten OEM-Version (Original Equipment Manufacturer) an die Anwender weitergeben. Ab August 2017 soll foxySPEC auf dem Markt erhältlich sein.

Demonstration auf Analytica

Wie empfindlich und selektiv das Massenspektrometer funktioniert, demonstrieren die Fraunhofer-Forscher an einem ersten kompakten Prototyp auf der Analytica, München, vom 10. bis 13. Mai 2016 am Fraunhofer-Gemeinschaftsstand in Halle A1, Stand 526.

Fakten, Hintergründe, Dossiers
  • Fraunhofer-Institut…
  • Fraunhofer-Institut…
  • In-situ-Analytik
Mehr über Fraunhofer-Institut IGB
  • News

    Aus klimaschädlichem Kohlenstoffdioxid werden nützliche Chemikalien

    Aus Kohlenstoffdioxid wichtige Ausgangsmaterialien für Feinchemikalien machen – das funktioniert tatsächlich: Einem Forscherteam des Fraunhofer IGB ist es im Max-Planck-Kooperationsprojekt eBioCO2n erstmals gelungen, CO2 in einer auf dem Transfer von Elektronen basierenden Enzymkaskade zu f ... mehr

    Kohlenstoffdioxid als Rohstoff für Kunststoffe und Co.

    Kohlenstoffdioxid ist einer der Haupttreiber des Klimawandels – die Emissionen müssen daher künftig sinken. Einen möglichen Weg zur Kohlendioxid-Reduktion zeigen Fraunhofer-Forschende auf: Sie nutzen das Klimagas als Rohstoff, etwa für Kunststoffe. Dazu stellen sie aus Kohlendioxid zunächst ... mehr

    Biologisch abbaubare Kunststoffalternativen für die Kosmetikbranche

    Rund 38 Kilogramm Plastikmüll fallen in Deutschland jährlich pro Kopf an. Mit dem Ziel, ein nachhaltiges Gesamtkonzept aus biologisch abbaubaren Verpackungsalternativen im Kosmetikbereich zu schaffen, forschen Wissenschaftler des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechn ... mehr

  • Forschungsinstitute

    Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik (IGB)

    Das Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB erarbeitet für die Wirtschaft und öffentliche Auftraggeber Problemlösungen in den Bereichen Gesundheit, Umwelt und Technik. Zu unseren Kompetenzen zählen Grenzflächentechnik, Membrantechnik, Biotechnologie und Zellsystem ... mehr

  • q&more Artikel

    3D-Gewebemodelle mit Immunkompetenz

    Die angeborene Immunität ist ein zentraler Bestandteil der menschlichen Immunabwehr. Mustererkennungsrezeptoren (Pattern Recognition Receptors, PRR), wie die Toll-like-Rezeptoren (TLR) spielen in diesem System eine Schlüsselrolle. mehr

  • Autoren

    Dr. Anke Burger-Kentischer

    Anke Burger-Kentischer promovierte an der Universität Tübingen über „Zelluläre und molekulare Mechanismen der strahleninduzierten Lungenfibrose“. Während ihres Postdoc-Aufenthaltes am Institut für Physiologie der Ludwig-Maximilians-Universität München beschäftigte sie sich mit dem zellspezi ... mehr

    Dr. Kai Sohn

    Kai Sohn, Jahrgang 1968, studierte Biologie an der Universität Heidelberg und schloss sein Studium als Diplombiologe ab. Er promovierte 1997 am Biochemiezentrum der Universität Heidelberg. Ab 1998 arbeitete Dr. Sohn an der Universität Stuttgart als Postdoc im Bereich medizinisch relevanter ... mehr

    Prof. Dr. Steffen Rupp

    Steffen Rupp, geboren 1962, studierte Chemie an den Universitäten Stuttgart, Freiburg und Cincinnati, OH, USA. Er promovierte 1994 am Institut für Biochemie der Universität Stuttgart mit Auszeichnung. Von 1995-1998 arbeitete er im Rahmen seines DFG-Forschungsstipendiums am Whitehead Institu ... mehr

Mehr über Fraunhofer-Gesellschaft
  • News

    Vom Klimagas zum industriellen Rohstoff

    Statt CO2 in die Atmosphäre zu entlassen, wo es den Klimawandel weiter antreibt, kann es auch als Rohstoff dienen: Etwa für industriell benötigte Substanzen wie Ameisensäure oder Methanol. Auf Laborebene wurde die Umsetzung von CO2 bereits eingehend untersucht, Nanodiamanten dienten dabei a ... mehr

    Die Fledermaus steht Pate bei der Digitalen Transformation

    Digitale Simulationen statt Trial and Error: Im Projekt PaintVisco modellieren Forschende am IPA die Entwicklung und Verarbeitung von Lacken. Die Daten dafür liefert ein neu konzipiertes Rheometer, mit dem sich erstmals exakt die viskoelastischen Eigenschaften von Lacken beim Trocknen und A ... mehr

    Kunststoff unter Strom

    Bisher war es nicht möglich, Sensoren und andere elektronische Geräte in einem einzigen Arbeitsgang additiv zu fertigen. Genau das ist nun aber einem Forschungsteam vom Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA gelungen. Eine entscheidende Rolle spielen dabei leitfä ... mehr

  • Forschungsinstitute

    Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.

    Die Fraunhofer-Gesellschaft ist die führende Organisation für angewandte Forschung in Europa. Unter ihrem Dach arbeiten 59 Institute an über 40 Standorten in ganz Deutschland. Rund 17 000 Mitarbeiterinnen und Mitarbeiter erzielen das jährliche Forschungsvolumen von 1,5 Mrd Euro. Davon erwir ... mehr