10.04.2017 - Universität Ulm

Star Wars im Reagenzglas

Neue Erkenntnisse zur umweltfreundlichen Herstellung von Wasserstoff

Wasserstoff ist aufgrund seiner hohen Energiedichte ein hervorragender Energiespeicher und Fahrzeuge mit verbauten Brennstoffzellen gelten als ernstzunehmende Alternative zu batteriebetriebenen Autos. Zwar ist das einzige Nebenprodukt der Brennstoffzelle Wasser, doch bei der Wasserstoffherstellung entstehen womöglich Treibhausgase. Eine umweltschonende Alternative ist die photokatalytische Wasserspaltung. Für den massenhaften Einsatz muss dieses Verfahren allerdings noch stark verbessert werden. In der Fachzeitschrift „Angewandte Chemie“ stellen Forscher aus Ulm, München und Kaiserslautern eine effiziente Methode zur Charakterisierung wasserspaltender Katalysatoren vor.

Wasserstoff hat das Zeug zum Energieträger der Zukunft: Allein bis 2019 stellt beispielsweise die Bundesregierung eine Viertelmilliarde Euro zur Verfügung, um Wasserstoffautos massentauglich zu machen. Denn was Reichweite und Betankungsdauer angeht, können diese Fahrzeuge durchaus mit Benzinern konkurrieren. Zur umweltfreundlichen Herstellung von Wasserstoff durch Photokatalyse forscht eine interdisziplinäre Gruppe um Professor Sven Rau, Leiter des Instituts für Anorganische Chemie I an der Universität Ulm. Bei dieser Form der künstlichen Photosynthese wird Wasser mithilfe von Sonnenenergie in seine Bestandteile Wasserstoff und Sauerstoff aufgetrennt: Ein spezieller Metallkomplex – im verwendeten Modell aus Ruthenium – dient als Lichtfänger. Das Ruthenium gibt daraufhin ein Elektron ab, das auf das Reaktionszentrum aus Platin oder Palladium springt. An diesem Zentrum wird dann Wasserstoff hergestellt. Für die massenhafte technische Nutzung sind bisherige Photokatalysatoren jedoch nicht aktiv genug.

Bei den Kollegen der Technischen Universität Kaiserslautern hat die Ulmer Forschergruppe ein Verfahren genutzt, das die Charakterisierung von wasserspaltenden Photokatalysatoren um ein Vielfaches beschleunigt und vereinfacht. Unterstützung in der Theorie erhielten die Forschungsgruppen dabei von Dr. Maxim Gelin von der TU München, der wichtige Simulationen zur Interpretation der experimentellen Daten beitrug. „Früher hat eine Reihe solcher Untersuchungen bis zu zehn Jahre gedauert. Jetzt können wir innerhalb von Tagen wichtige Eigenschaften eines Photokatalysators bestimmen, und so auch Hinweise auf Optimierungspotentiale erhalten“, erklärt Professor Sven Rau. Herzstück des Versuchsaufbaus ist eine Ionenfalle in einem so genannten Massenspektrometer. „In der Gasphase werden die Katalysatormoleküle auf einer Kreisbahn gehalten und stetig mit energiereichen und ultrakurzen Laserpulsen beschossen, wobei die Moleküle einzelne Bestandteile verlieren. Dadurch lässt sich das Springen der Elektronen verfolgen und wir gewinnen gleichzeitig Informationen zur Stabilität des Photokatalysators“, erklären Rau und PD Dr. Christoph Riehn von der TU Kaiserslautern, die das Verfahren mit „Star Wars im Reagenzglas“ vergleichen. Anhand der untersuchten Modell-Photokatalysatoren konnten die Wissenschaftler zeigen, dass die aus der Lösung bekannte Stabilität auch in der Gasphase existiert. Dafür haben sie in den letzten zehn Jahren gewonnene Daten mit den aktuellen Ergebnissen abgeglichen. Zudem fanden sich Hinweise auf ein ultraschnelles Springen von Elektronen von dem photochemischen Triebwerk, in diesem Fall ein Rutheniumkomplex, zum katalytischen Reaktionszentrum, einem Platinkomplex. Somit konnte die Forschergruppe die Funktionalität des neuen Verfahrens anhand detailliert untersuchter Modellkatalysatoren nachweisen.

Die Vorteile sind zahlreich: Der Materialaufwand ist ebenso geringer wie der Anspruch an die Reinheit der Katalysatoren. Zudem lassen sich sehr viele Eigenschaften in einem Schritt bestimmen. „Die Entwicklung neuer molekularer Energiematerialien wird in Zukunft schneller und effizienter werden. Bisher haben wir mit einem Schäufelchen gearbeitet, jetzt besitzen wir einen Bagger“, erläutert Rau, dessen Institut unzählige Katalysatoren hergestellt und charakterisiert hat. Die Arbeitsgruppe um PD Dr. Christoph Riehn, darunter Doktorand Dimitri Imanbaew, vom Fachbereich Chemie der TU Kaiserslautern hat die physikalische Methode zur Verfügung gestellt. Sie besteht aus einer Kombination von Massenspektrometrie und Femtosekunden-Laserspektroskopie. Entwickelt haben die Kaiserslauterer Physikochemiker dieses Verfahren im Rahmen des Sonderforschungsbereichs SFB/TRR 88 („Kooperative Effekte in homo- und heterometallischen Komplexen“, 3MET). Als nächsten Schritt wollen die Chemiker alternative, weniger seltene Materialien für das Photoreaktionszentrum finden. Derzeit ist Eisen ein vielversprechender Kandidat. Zudem funktioniert die Wasseroxidation noch nicht. „Bis wir umweltfreundlichen Wasserstoff als Massenprodukt auf diese Weise herstellen können, wird es noch Jahrzehnte dauern. Doch schon jetzt beschleunigt unser neues Verfahren die Suche nach alternativen Energiequellen“, resümiert Rau.

Fakten, Hintergründe, Dossiers
  • Photokatalysatoren
  • künstliche Photosynthese
  • Ruthenium
  • Wasseroxidation
Mehr über Uni Ulm
  • News

    Was Lithium-Akkus explosiv macht

    Brennende Smartphones oder sogar Elektroautos sind nicht nur Gegenstand etlicher YouTube-Videos. Weltweit gehen Forschende den Auslösern solcher Batteriebrände nach. Dabei handelt es sich oftmals um astartige Auswüchse ("Dendriten"), die beim Aufladen der Akkus entstehen. Bisher war allerdi ... mehr

    Filmpremiere mit Super-Mikroskop und Nanoröhrchen

    Atome sind die Bausteine unserer Welt: Dabei ist die Frage, wie sich diese winzigen Teilchen verbinden und voneinander lösen noch nicht vollständig beantwortet. Das Entstehen und Brechen dieser chemischen Verbindungen in Echtzeit festzuhalten, gehörte bislang zu den großen Herausforderungen ... mehr

    Magnetische Nanopartikel mit ionischen Flüssigkeiten für die Wasseraufbereitung

    In vielen Teilen der Welt ist der Zugang zu sauberem Trinkwasser alles andere als selbstverständlich. Filtration großer Mengen ist aufgrund der langsamen Durchflussgeschwindigkeiten jedoch kaum praktikabel. In der Zeitschrift Angewandte Chemie stellen Wissenschaftler einen neuartigen Ansatz ... mehr

  • q&more Artikel

    Synthetische Rezeptoren für Viren

    Durch die Fortschritte in der Polymerchemie und Nanotechnologie können Nanomaterialien heute mit einer Vielzahl an Eigenschaften und Funktionalitäten synthetisch hergestellt werden. Dies motiviert die Herstellung bioinspirierter Strukturen und Systeme, die beispielsweise in ihren Bindungse ... mehr

  • Autoren

    Prof. Dr. Boris Mizaikoff

    Boris Mizaikoff, Jahrgang 1965, promovierte 1996 in Analytischer Chemie an der Technischen Universität Wien und hat sich im Jahr 2000 ebendort für das Fach Analytische Chemie habilitiert. Im Anschluss war er 2000–2007 am Georgia Institute of Technology (Atlanta, USA) an der School of Chemis ... mehr