Meine Merkliste
my.chemie.de  
Login  

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

23.05.2017

Chemiker der Ruhr-Universität Bochum haben eine neue Methode entwickelt, mit der sie Veränderungen in der Energie und Struktur von Wassermolekülen in der Umgebung gelöster Moleküle erfassen können. Mit dieser sogenannten Terahertz-Kalorimetrie untersuchten sie die Eigenschaften der Wasserhülle, die gelöste Alkoholmoleküle umgibt. In Zukunft wollen sie die Methode auch für größere Verbindungen, etwa Enzyme, einsetzen und so Erkenntnisse sammeln, die bei der Entwicklung von Medikamenten helfen können.

Die Ergebnisse veröffentlichte Prof. Dr. Martina Havenith, Lehrstuhl für Physikalische Chemie II und Sprecherin des Exzellenzclusters Resolv, mit Dr. Fabian Böhm und Dr. Gerhard Schwaab in der Fachzeitschrift „Angewandte Chemie“.

Methode jetzt in Echtzeit anwendbar

Fundamentale biologische Prozesse wie enzymatische Reaktionen oder auch das Andocken eines Medikaments an seinen Interaktionspartner finden in wässrigen Lösungen statt – aber nur, wenn sich die Reaktionspartner im Lösungsmittel erkennen. Die für die Erkennung notwendigen Prozesse lassen sich mit der Kalorimetrie messen. Die Methode bestimmt unter anderem Enthalpie und Entropie, welche Maße für den Wärmetransfer und die Unordnung im System sind.

Die Kalorimetrie ist eine etablierte Technik, die Wärmemengen misst. Sie erlaubt Analysen auf Zeitskalen von 1 bis 100 Sekunden. Spektroskopische Verfahren, die auf Lichtpulsen basieren, ermöglichen Messungen im Bereich von einer Millionstel oder einer Milliardstel Sekunde. Die Bochumer Chemiker verbanden diese Ansätze miteinander.

„Mit der Realisierung eines Terahertz-Kalorimeters haben wir das erste Ziel umgesetzt, das wir uns für die Verwendung der Mittel aus dem Advanced Grant des Europäischen Forschungsrats vorgenommen hatten“, so Martina Havenith. 2016 hatte sie den mit 2,5 Millionen Euro dotierten Grant eingeworben.

Struktur von Wasserhüllen bestimmen

Um jedes gelöste Molekül bildet sich eine Hülle aus umgebenden Wassermolekülen, die Hydrathülle. Das gelöste Molekül stört das regelmäßige Netzwerk aus Wasserstoffbrücken zwischen den Wassermolekülen, sodass sich das Wasser in der Hydrathülle anders verhält als das freie Wasser. Die Struktur der Hydrathülle hängt dabei von der Form und der chemischen Zusammensetzung des gelösten Moleküls ab.

Haveniths Team untersuchte die Hydrathülle von fünf verschieden großen Alkoholen und konnte mithilfe der Terahertz-Kalorimetrie unterschiedlich strukturierte Hüllen klassifizieren. Für die neue Technik kommen Lichtpulse mit einer Wellenlänge knapp unter einem Millimeter zum Einsatz. Die Belichtung mit Terahertz-Pulsen liefert Fingerabdrücke der Schwingungen innerhalb des Wassernetzwerks. Daraus wiederum können die Forscher auf Änderungen der Entropie und Enthalpie zurückschließen.

„Die Methode ermöglicht es erstmals, Parameter wie Entropie und Enthalpie, die für die molekulare Erkennung entscheidend sind, direkt aus spektroskopischen Daten im Terahertz-Bereich auszulesen“, resümiert Havenith.

Fakten, Hintergründe, Dossiers
  • Entropie
Mehr über Ruhr-Universität Bochum
  • News

    Ein Blitz unter Wasser

    Nur wenige Nanosekunden lang zerreißt ein Plasma das Wasser. Möglicherweise regeneriert es katalytische Oberflächen auf Knopfdruck. Elektrochemische Zellen helfen unter anderem dabei, CO2 zu recyceln. Die katalytischen Oberflächen nutzen sich dabei allerdings ab. Wie man sie mithilfe eines ... mehr

    Chemiker baut Enzyme aus Pflanzen in Sensoren und Brennstoffzellen ein

    Der Bochumer Chemiker Prof. Dr. Nicolas Plumeré ist mit dem Luigi-Galvani-Preis der Bioelectrochemical Society ausgezeichnet worden. Der Preis wird alle zwei Jahre an eine Forscherin oder einen Forscher verliehen, der oder die auf dem Gebiet der Bioelektrochemie einen herausragenden Beitrag ... mehr

    Hohe Reaktionsraten auch ohne Edelmetalle

    Edelmetalle sind oft effiziente Katalysatoren. Aber sie sind teuer und selten. Wie effizient edelmetallfreie Alternativen sind, ist bislang jedoch schwer zu bestimmen. Edelmetallfreie Nanopartikel könnten eines Tages teure Katalysatoren für die Wasserstoffproduktion ersetzen. Welche Reaktio ... mehr

  • q&more Artikel

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr

    Mathies V. Evers

    Mathies Evers, Jahrgang 1989, studierte Chemie an der Ruhr-Universität Bochum, wo er an der Synthese atompräziser molekularer Cluster forschte. Nach seinem Masterabschluss begann er seine Doktorarbeit am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik und wird durch den ... mehr

    Prof. Dr. Kristina Tschulik

    Kristina Tschulik promovierte im Jahr 2012 an der TU Dresden und arbeitete als Postdoktorandin am Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden sowie an der Universität Oxford. Danach baute sie gefördert durch ein NRW-Rückkehrprogramm die Arbeitsgruppe für „Elektrochemie u ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.