24.01.2020 - Rice University

Bei Batterien der nächsten Generation ist weniger ist vielleicht mehr

Der Prozess der Entwicklung besserer wiederaufladbarer Batterien mag zwar trübe sein, aber es gibt eine Aluminiumoxidbeschichtung. Eine dünne Schicht des Metalloxids, die von Ingenieuren der Brown School of Engineering der Rice University auf gewöhnliche Kathoden aufgebracht wurde, enthüllte neue Phänomene, die zu Batterien führen könnten, die besser auf Elektroautos und robustere netzunabhängige Energiespeicher ausgerichtet sind.

Die Studie in der ACS Applied Energy Materials der American Chemical Society beschreibt einen bisher unbekannten Mechanismus, durch den Lithium in Batterien eingeschlossen wird und so die Anzahl der Lade- und Entladevorgänge bei voller Leistung begrenzt wird.

Aber diese Eigenschaft dämpft nicht die Hoffnung, dass solche Batterien in manchen Situationen genau richtig sein könnten.

Das Ricelabor des Chemie- und Biomolekularingenieurs Sibani Lisa Biswal fand einen Sweet Spot in den Batterien, der, da er ihre Speicherkapazität nicht voll ausnutzt, für Anwendungen, die dies benötigen, einen gleichmäßigen und stabilen Zyklus bieten könnte.

Biswal sagte, dass konventionelle Lithium-Ionen-Batterien Anoden auf Graphitbasis verwenden, die eine Kapazität von weniger als 400 Milliampere-Stunden pro Gramm (mAh/g) haben, aber Siliziumanoden haben potenziell die 10-fache Kapazität. Das hat aber auch eine Kehrseite: Silizium dehnt sich aus, wenn es sich mit Lithium legiert, wodurch die Anode belastet wird. Indem sie das Silizium porös machten und seine Kapazität auf 1.000 mAh/g begrenzten, sorgten die Testbatterien des Teams für ein stabiles Radfahren mit immer noch ausgezeichneter Kapazität.

"Maximale Kapazität belastet das Material sehr stark, daher ist dies eine Strategie, um Kapazität ohne das gleiche Maß an Belastung zu erhalten", sagte Biswal. "1.000 Milliampere-Stunden pro Gramm ist immer noch ein großer Sprung."

Das Team unter der Leitung von Postdoc Anulekha Haridas testete das Konzept der Paarung der porösen, hochkapazitiven Siliziumanoden (anstelle von Graphit) mit Hochspannungs-Nickel-Mangan-Kobalt-Oxid (NMC)-Kathoden. Die vollzelligen Lithium-Ionen-Batterien zeigten eine stabile Zyklenfestigkeit bei 1.000 mAh/g über Hunderte von Zyklen.

Einige Kathoden hatten eine 3-Nanometer-Schicht aus Aluminiumoxid (aufgebracht durch Atomlagenabscheidung), andere nicht. Diejenigen mit der Aluminiumoxidbeschichtung schützten die Kathode vor dem Zerfall in Gegenwart von Flusssäure, die sich bildet, wenn auch nur geringe Mengen Wasser in den flüssigen Elektrolyten eindringen. Tests haben gezeigt, dass das Aluminiumoxid auch die Ladegeschwindigkeit der Batterie beschleunigt und die Anzahl der Lade- und Entladevorgänge reduziert.

Der schnelle Lithiumtransport durch Aluminiumoxid scheint zu umfangreichen Fallen zu führen, sagte Haridas. Die Forscher wussten bereits über mögliche Wege, wie Siliziumanoden Lithium einfangen und damit nicht für die Stromversorgung von Geräten zur Verfügung stehen, aber sie sagte, dies sei der erste Bericht, dass das Aluminiumoxid selbst Lithium absorbiert, bis es gesättigt ist. An diesem Punkt, sagte sie, wird die Schicht zu einem Katalysator für den schnellen Transport zur und von der Kathode.

"Dieser Lithium-Einfangmechanismus schützt die Kathode wirksam, indem er dazu beiträgt, eine stabile Kapazität und Energiedichte für die Vollzellen aufrechtzuerhalten", sagte Haridas.

Hinweis: Dieser Artikel wurde mit einem Computersystem ohne menschlichen Eingriff übersetzt. LUMITOS bietet diese automatischen Übersetzungen an, um eine größere Bandbreite an aktuellen Nachrichten zu präsentieren. Da dieser Artikel mit automatischer Übersetzung übersetzt wurde, ist es möglich, dass er Fehler im Vokabular, in der Syntax oder in der Grammatik enthält. Den ursprünglichen Artikel in Englisch finden Sie hier.

Fakten, Hintergründe, Dossiers
  • Aluminiumoxide
  • Lithium-Ionen-Batterien
Mehr über Rice University
  • News

    Umkehrung beschleunigt Bildung eines wichtigen Moleküls

    Die Geschichte von Halichondrin B, einem inspirierenden Molekül, das aus einem Meerestier gewonnen wird, geht auf die Entdeckung des Moleküls in einem Meeresschwamm im Jahr 1986 zurück. Obwohl es bereits mehrmals im Labor nachgebaut wurde, könnte eine neue Arbeit von Chemikern der Rice Univ ... mehr

    Neues Quantenmaterial entdeckt

    Im Alltag haben Phasenübergänge meist mit Temperaturänderung zu tun – etwa wenn ein Eiswürfel wärmer wird und schmilzt. Aber auch andere Phasenübergänge sind möglich, etwa bei einer Änderung des Magnetfelds. Wenn man die Quanten-Eigenschaften von Materialien verstehen möchte, sind Phasenübe ... mehr

    Cerium verdrängt Silber bei der Herstellung von Medikamentenvorläufern

    Sparen Sie Ihr Silber! Es ist besser für Schmuck geeignet als als Katalysator für Medikamente. Wissenschaftler der Rice University haben eine stark vereinfachte Methode zur Herstellung von Fluoroketonen entwickelt, Vorläufern für die Entwicklung und Herstellung von Medikamenten, die normale ... mehr