27.03.2020 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Komplexe Zelluloseobjekte drucken

Forscher der ETH Zürich und der Empa druckten mit einem Zellulose-Verbundmaterial verschiedene Objekte, deren Zellulosegehalt höher liegt als derjenige von anderen 3D-gedruckten zellulosebasierten Gegenständen. Ein Trick half dabei.

Bäume und andere Pflanzen machen es vor: Sie stellen Zellulose selbst her und bauen daraus komplexe Strukturen mit aussergewöhnlichen mechanischen Eigenschaften. Zellulose ist deshalb für Materialwissenschaftler attraktiv, um nachhaltige Produkte mit speziellen Funktionen herzustellen. Das Material zu komplexen Strukturen mit hohem Zelluloseanteil zu verarbeiten, fordert Materialwissenschaftler jedoch nach wie vor heraus.

Eine Gruppe von Forschenden der ETH Zürich und der Empa haben nun einen Weg gefunden, Zellulose mittels 3D-Drucker zu verarbeiten, um fast beliebig komplexe Gegenstände mit sehr hohem Zelluloseanteil zu schaffen.

Dazu kombinierten die Forscher das Direct Ink Writing, eine 3D-Drucktechnik, mit einem nachfolgenden Verdichtungsprozess. Damit gelang es den Materialforschenden, den Zellulosegehalt in den gedruckten Objekten auf einen Volumenanteil von 27 Prozent zu heben, wie sie in der Fachzeitschrift «Advanced Functional Materials» berichteten.

Tinte aus Wasser und Nanozellulose

Die ETH- und Empa-Forscher sind freilich nicht die ersten, die Zellulose mit dem 3D-Drucker verarbeiten. Mit bisherigen Ansätzen, bei denen ebenfalls zellulosehaltige Druckpaste verwendet wurden, gelang es allerdings nicht, feste Objekte mit einem derart hohen Zelluloseanteil und von solch hoher Komplexität anzufertigen.

Die Druckpaste, die Hausmann und seine Kollegen einsetzen, ist denkbar einfach zusammengesetzt. Sie ist eine Dispersion aus Wasser und wenigen hundert Nanometer grossen Zellulosepartikeln und -fasern. Der Zelluloseanteil liegt zwischen sechs und 14 Prozent des Tintenvolumens.

Lösungsmittelbad verdichtet Zellulose

Der Trick der ETH-Forscher ist, den Gegenstand nach dem Drucken in ein Bad aus organischen Lösungsmitteln einzubringen. Weil Zellulose organische Lösungsmittel abweist, lagern sich die Zellulosepartikel dicht zusammen. Dadurch schrumpft das Objekt, was zu einer starken Zunahme der relativen Menge von Zellulosepartikel im Material führt.

In einem weiteren Schritt tauchten die Wissenschaftler den Gegenstand in eine weitere Lösung, welche ein lichtempfindliches Kunststoffmonomer enthielt. Die Monomere füllten beim Verdunsten des Lösungsmittels die Lücken des Zellulosegerüsts. Um die Monomere in festen Kunststoff zu verwandeln, setzten die Forscher den Gegenstand UV-Licht aus. So entstand ein Verbundmaterial mit einem Zellulosegehalt von besagten 27 Volumenprozent.

«Der Verdichtungsprozess erlaubte es uns, mit einem sechs bis 14-prozentigen Wasser-Zellulose-Gemisch anzufangen und am Ende ein Verbundmaterialobjekt mit 27 Volumenprozent von Zellulose-Nanokristallen zu erhalten», sagt Hausmann.

Elastizität lässt sich einstellen

Je nach Art des eingesetzten Kunststoffmonomers können die Forschenden die mechanischen Eigenschaften wie Elastizität oder Stärke der Druckgegenstände einstellen. Dies erlaubt es ihnen je nach Bedarf harte oder weiche Teile zu erzeugen.

Mithilfe dieses Vorgehens konnten die Forschenden verschiedene, teils filigrane und trotzdem stabile Verbundmaterialobjekte herstellen, wie etwa eine Flammenskulptur, die nur ein Millimeter dick ist. Die Verdichtung von Gegenständen mit einer Wandstärke von mehr als fünf Millimetern führt allerdings zu Verzerrungen, da sich deren Oberflächen rascher zusammenziehen als deren Inneres.

Faserausrichtung wie bei Holz

Ihre Objekte untersuchten die Forschenden mittels Röntgenanalysen und mechanischen Tests. Dabei zeigte sich, dass sich die Zellulose-Nanokristalle ähnlich ausrichten wie Zellulosefasern in natürlichem Holzmaterialien. «Das bedeutet, dass wir die Mikrostruktur unserer Druckgegenstände so steuern können, sodass Materialien entstehen, deren Mikrostruktur derjenigen der biologischen Vorbildern wie Holz ähneln», betont Rafael Libanori, Oberassistent in der Gruppe von ETH-Professor André Studart.

Noch sind die gedruckten Stücke klein – Labormassstab eben. Doch mögliche Anwendungen gibt es viele, angefangen bei massgeschneiderten Verpackungen bis hin zu Knorpelersatz-Implantaten für Ohren. Die Forscher haben denn auch ein Ohr nach menschlichem Vorbild angefertigt. Bis ein solches jedoch in der Klinik eingesetzt werden könnte, braucht es mehr Forschung und klinische Versuche.

An der Drucktechnik könnte auch die Autoindustrie interessiert sein. Japanische Autobauer haben bereits einen Prototyp eines Sportwagens gebaut, dessen Karosserie fast vollständig mit Zellulosebasierten Materialien gefertigt wurde.

Fakten, Hintergründe, Dossiers
  • 3D-Drucktechnik
Mehr über ETH Zürich
  • News

    Wie fliegen wir künftig klimaneutral?

    Eine klimaneutrale Luftfahrt ist möglich. Doch auch in Zukunft dürften Flugzeuge mit fossilen Treibstoffen betrieben werden. Das ausgestossene CO2 muss konsequent im Untergrund gespeichert werden. Es ist politisch ausgemacht und aus Klimaschutzgründen notwendig, dass unsere ganze Volkswirts ... mehr

    Klimapositive Geschäftsideen in die Realität umsetzen

    An der ETH Zürich wagen sich zusehends mehr Forschende mit ihren Erkenntnissen aus dem Labor in die Praxis. Mit ihren Firmen wollen die Gründer direkt dazu beizutragen, den Anstieg des Kohlendioxid-​Gehalts in der Atmosphäre zu drosseln. Die «eindeutige Erwärmung des Klimasystems» ist im fü ... mehr

    Biochemische Zufallszahl

    Bei der Verschlüsselung von Information sowie für Spielautomaten werden echte Zufallszahlen benötigt. Das sind Zahlen, die tatsächlich zufällig sind und von niemandem erraten werden können, auch nicht von Personen, welche detaillierte Kenntnisse haben von der Methode, mit der sie generiert ... mehr

  • Forschungsinstitute

    ETH Zürich Inst.f. Lebensm.wiss.,Ern.,Ges.

    Die Kernkompetenzen des Labors für Lebensmittelmikrobiologie sind die Detektion und Kontrolle von pathogenen Organismen im Lebensmittel, die Analyse komplexer Mikrofloren und molekulare Mechanismen der bakteriellen Pathogenität. mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr

Mehr über Empa
  • News

    Intelligente Fasern: Farbwechsel bei beschädigten Seilen

    Hochleistungsfasern, die hohen Temperaturen ausgesetzt waren, verlieren meist unerkannt ihre mechanischen Eigenschaften und können im schlimmsten Fall genau dann reissen, wenn Leben davon abhängen. Zum Beispiel Sicherheitsseile der Feuerwehr oder Tragseile für schwere Lasten auf Baustellen. ... mehr

    Wenn die Jacke Solarstrom liefert

    Einem Forscherteam der Empa ist es gelungen, ein Material herzustellen, das wie ein leuchtender Solarkollektor funktioniert und gleichzeitig auf Textilien aufgebracht werden kann. Dies eröffnet zahlreiche Möglichkeiten, Energie direkt dort zu produzieren, wo sie benötigt wird, nämlich bei d ... mehr

    Der Transistor aus dem Drucker

    Empa-Forscher arbeiten an Elektronik, die aus dem Drucker kommt. Das ermöglicht, die Schaltkreise auf allen möglichen Unterlagen herzustellen, etwa Papier oder Kunststofffolien – doch es gibt noch einige Hürden zu überwinden. Wie wäre es, Elektronik einfach auf eine beliebige Unterlage druc ... mehr

  • Videos

    Eine wasserbasierte, wiederaufladbare Batterie

    Ein Gramm Wasser löst sieben Gramm NaFSI-Salz auf. So entsteht eine klare Salzlösung mit einer elektrochemischen Stabilität von bis zu 2,6 Volt - doppelt so viel wie bei anderen wässrigen Elektrolyten. mehr

    Nanozellulose-Schwämme gegen ausgelaufenes Öl

    Mit Nanozellulose gegen die Ölverschmutzungen in Gewässer. Empa-Forschenden ist es gelungen, einen Nanozellulose-Schwamm herzustellen, der Öl im Wasser aufsaugt und immer noch schwimmt. So könnte man in Zukunft ganz einfach ausgelaufenes Öl im Wasser entfernen. mehr

    Brennstoffzellen: «Saubere» Mobilität dank Wasserstoff

    Wasserstoff wird oft als «Benzin der Zukunft» bezeichnet. Die Postauto Schweiz AG betreibt versuchsweise eine Wasserstofftankstelle in Brugg AG für ihre Brennstoffzellen-Busse. An diesem Projekt beteiligt sich die Empa in Beratungsfunktion. Sie untersucht die Effizienz der Wasserstoffproduk ... mehr

  • Forschungsinstitute

    Empa - Swiss Federal Laboratories for Materials Testing and Research

    mehr

    Empa (Eidgenössische Materialprüfungs- und Forschungsanstalt)

    Die Empa ist eine interdisziplinäre Forschungs- und Dienstleistungsinstitution für Materialwissenschaften und Technologieentwicklung innerhalb des ETH-Bereichs. Die Forschungs- und Entwicklungsaktivitäten der Empa orientieren sich an den Anforderungen der Industrie und den Bedürfnissen der ... mehr

    Empa

    Die Empa ist eine interdisziplinäre Forschungs- und Dienstleistungsinstitution für Materialwissenschaften und Technologieentwicklung innerhalb des ETH-Bereichs. Die Forschungs- und Entwicklungsaktivitäten der Empa orientieren sich an den Anforderungen der Industrie und den Bedürfnissen der ... mehr