21.05.2021 - Friedrich-Schiller-Universität Jena

Unsichtbares sichtbar machen

Neue Methode zur Untersuchung von atomaren Strukturen in Materialoberflächen

Wissenschaftler der Friedrich-Schiller-Universität Jena, der University of California Berkeley und dem Institut Polytechnique de Paris nutzen intensives Laserlicht im extrem ultravioletten Spektrum, mit dem sie einen nichtlinear optischen Prozess im Labormaßstab erzeugen, wie es bislang nur an Großforschungsanlagen gelungen ist. Wie das Team in der aktuellen Ausgabe des Fachmagazins „Science Advances“ schreibt, konnte es diesen Effekt erstmals mit einer Laserquelle im Labormaßstab realisieren und damit die Oberfläche einer Titanprobe bis auf atomare Ebene untersuchen.

Chemische Reaktionen, wie sie beispielsweise beim Laden und Entladen einer Batterie auftreten, finden vorrangig an Oberflächen und Grenzflächen statt. Während sich die makroskopischen Produkte einer Reaktion recht einfach untersuchen lassen, ist es bislang jedoch schwierig, ein genaueres Bild über den Verlauf chemischer Reaktionen auf atomarer Ebene zu gewinnen. Dafür sind Messmethoden nötig, die auf den extrem kurzen Zeitskalen, auf denen chemische Reaktionen ablaufen, Beobachtungen ermöglichen.

Prinzipiell eignen sich dafür spektroskopische Methoden mit sehr kurzen Laserpulsen zur zeitlichen Auflösung. Gleichzeitig muss das Laserlicht von sehr kurzer Wellenlänge sein, wie Tobias Helk von der Friedrich-Schiller-Universität Jena erklärt. „Um einzelne Elemente mittels Kernelektronenresonanz gezielt untersuchen zu können, braucht es Laserlicht mit wenigen Nanometern Wellenlänge – also Strahlung im extrem-ultravioletten (XUV) oder Röntgenbereich des Spektrums.“ Für die Beobachtung chemischer Prozesse ist es außerdem wichtig, dass sich die Grenzflächen zwischen Medien und Materialoberflächen untersuchen lassen, an denen chemische Reaktionen stattfinden, so der Physiker weiter. Dafür müssen die Laserpulse, neben kurzer Wellenlänge und kurzer Dauer, auch eine extrem hohe Intensität aufweisen, um sogenannte nichtlineare Effekte hervorrufen zu können, welche es erlauben, das Messsignal auf die Grenzfläche zurückzuführen.

Bisher gibt es jedoch nur sehr wenige Methoden, um solch intensive Laserstrahlung im XUV- und Röntgenbereich zu erzeugen. „Bisher war das nur an Großforschungsanlagen, wie dem Freien-Elektronen-Laser FLASH am DESY möglich“, sagt Prof. Dr. Christian Spielmann vom Institut für Optik und Quantenelektronik der Universität Jena. Er und sein Team haben jetzt jedoch mit Forschenden aus den USA und Frankreich einen Weg gefunden, wie solche Untersuchungen auch in einem gängigen Laserlabor möglich sind.

Nichtlineare Frequenzverdopplung an einer Titanoberfläche

Hierfür wurde ein Soft-X-ray-Laser des Laboratoire d’Optique Appliquee in Palaisseau (Frankreich) als Lichtquelle genutzt. „In unserem Experiment haben wir eine spezielle Fokussiergeometrie aufgebaut, bestehend aus einem sphärisch geformten Spiegel, die es uns erlaubt, die Strahlung des Lasers auf einen sehr kleinen Bereich zu konzentrieren“, berichtet Doktorand Tobias Helk, Erstautor der Studie. Die Strahlung mit einer Wellenlänge von 32,8 Nanometern wurde auf eine ultradünne Titanfolie fokussiert und ihre nichtlineare Wechselwirkung mit den Materieteilchen analysiert. „Wie bereits aus Untersuchungen mit Strahlung im sichtbaren und infraroten Bereich bekannt, lässt sich durch die Wechselwirkung von Lichtteilchen und Materieteilchen Licht mit neuen Eigenschaften erzeugen“, erklärt Helk. Bei einem als „nichtlineare Frequenzverdopplung“ bezeichneten Prozess werden beispielsweise zwei Photonen des eingestrahlten Lichts vom Material absorbiert und ein Photon mit doppelter Frequenz (doppelter Energie) abgestrahlt.

Und genau diesen Effekt konnten die Forschenden jetzt zeigen. Sie haben die aus der Wechselwirkung mit der Titanfolie resultierende Strahlung durch ein Spektrometer getrennt und mittels einer Kamera aufgenommen. Durch den Vergleich von Simulationen mit den Messergebnissen konnten sie außerdem zeigen, dass die resultierende Strahlung an der Oberfläche der Titanfolie entsteht und nicht innerhalb des Materials.

„Diese Form der Oberflächenspektroskopie im XUV-Bereich im Labormaßstab durchführen zu können, öffnet völlig neue Perspektiven. Beispielsweise kann man nun chemische Prozesse an Oberflächen oder verborgenen Grenzflächen aus der Sicht eines einzelnen Atoms in ansonsten komplexen chemischen Umgebungen untersuchen“, ordnet Prof. Dr. Michael Zürch von der University of California in Berkeley das Ergebnis ein. Ferner ermögliche die kurze Pulsdauer der verwendeten Pulse die Untersuchung dynamischer Prozesse an Grenzflächen, wie sie beispielsweise beim Laden und Entladen von Batterien auftreten.

Fakten, Hintergründe, Dossiers
Mehr über Uni Jena
  • News

    High-Speed-Modulation dank Kristallsymmetrie

    Nichtlineare Optik ist in zahlreichen Gebieten der Wissenschaft und Technik von herausragender Bedeutung – insbesondere für die Erzeugung der zweiten Harmonischen, also der Verdopplung der Frequenz eines Lichtstrahls. Auf diese Weise wird beispielsweise unsichtbares Infrarotlicht zum sichtb ... mehr

    Wasserstoff mit weniger Energie erzeugen

    Wie eine von der Natur inspirierte Verbindung Wasserstoff produziert, das hat ein internationales Forschungsteam der Universitäten Jena und Mailand-Bicocca nun erstmals detailliert beschrieben. Die Erkenntnisse sind ein Grundstein zur energieeffizienten Produktion von Wasserstoff als nachha ... mehr

    Hybridmembran verdoppelt Lebensdauer von Batterien

    Die Energiedichte herkömmlicher Lithium-Ionen-Batterien nähert sich einem Sättigungspunkt, der den Anforderungen der Zukunft – etwa in Elektrofahrzeugen – nicht mehr gerecht wird. Lithium-Metall-Batterien können hingegen im Vergleich dazu doppelt so viel Energie pro Gewichtseinheit liefern. ... mehr

  • q&more Artikel

    Gene auf Zucker

    Der gezielte Transport von DNA und RNA mit Vektoren, meist aus synthetischen Polymeren, in Zellkulturen gehört mittlerweile zum festen Repertoire der biologischen Forschung und Entwicklung, was die Vielzahl an kommerziellen Kits zeigt. Allerdings gestalten sich bisher nicht nur viele Laborv ... mehr

    Sex oder Tod

    Diatomeen sind einzellige Mikroalgen, die aufgrund ihrer filigranen und reich verzierten mineralisierten Zellwand auch als Kieselalgen bezeichnet werden. Trotz ihrer mikroskopisch kleinen Zellen spielen ­diese Algen eine fundamentale ­Rolle für marine Ökosysteme und sind sogar zentrale Akte ... mehr

    Wertgebende Komponenten

    Die Isolierung bioaktiver Pflanzeninhaltsstoffe, ätherischer Öle bzw. pflanzlicher Farb- und Aromastoffe erfordert aufwändige und kostenintensive Verfahren. Oft ist jedoch für verschiedene Anwendungen eine Isolierung der Einzelkomponenten nicht erforderlich, es genügt deren Konzentrierung. ... mehr

  • Autoren

    Prof. Dr. Thomas Heinze

    Thomas Heinze, Jahrgang 1958, studierte Chemie an der FSU Jena, wo er 1985 promovierte und nach dem Postdoc an der Katholischen Universität Leuven (Belgien) 1997 habilitierte. 2001 folgte er dem Ruf auf eine Professur für Makromolekulare Chemie an die Bergische Universität Wuppertal. Seit 2 ... mehr

    Prof. Dr. Dagmar Fischer

    Dagmar Fischer ist approbierte Apothekerin und promovierte 1997 im Fach Pharmazeutische Technologie und Biopharmazie an der Philipps-Universität Marburg. Nach einem Aufenthalt am Texas Tech University Health Sciences Center, USA, sammelte sie mehrere Jahre Erfahrung als Leiterin der Präklin ... mehr

    Prof. Dr. Stefan H. Heinemann

    Stefan H. Heinemann, geb. 1960, studierte Physik an der Universität Göttingen. Nach zweijähriger Forschungszeit an der Yale University, New Haven, USA, promovierte er 1990 am Max-Planck-Institut für biophysikalische Chemie in Göttingen. Nach einem Forschungsaufenthalt an der Standford Unive ... mehr

Mehr über UC Berkeley
  • News

    Wie eingesperrte Protonen wandern

    Protonen können in wässrigen Lösungen üblicherweise sehr schnell wandern – schneller als andere Ionen. Das gilt allerdings nur, wenn sie mehr als zwei Nanometer Platz haben, wie eine Studie der Ruhr-Universität Bochum (RUB) und der University of California in Berkeley zeigt. Auf engem Raum ... mehr

    Endlich getrennt und frisch gebunden

    Die Kohlenstoff-Wasserstoff-Bindungen von Alkanen sind nur sehr schwer zu „knacken“, um Wasserstoffatome durch andere Atomgruppen zu ersetzen – allen voran diejenigen an den Molekülenden, wo drei Wasserstoffatome an einem Kohlenstoff hängen. Methan (CH4) und Ethan (CH3CH3) haben nur solche ... mehr

    Hart wie ein Diamant und verformbar wie Metall

    Smartphones mit großflächigen Glasgehäusen und Displays überzeugen zwar optisch, sind aber auch sehr anfällig für Risse und Kratzer. Um diese Schäden künftig zu vermeiden, bräuchte es ein Material, das die Härte eines Diamanten und die Verformbarkeit eines Metalls vereint. Ein Material, das ... mehr