Meine Merkliste
my.chemie.de  
Login  

Endlagerung



Unter Endlagerung versteht man allgemein die Entsorgung von Abfällen durch deren Verbringung in eine speziell dafür angelegte Einrichtung, das sogenannte Endlager. Endlagerung ist die Kurzform für „endgültige Lagerung“, und der Begriff stellt in diesem Zusammenhang eine klare Abgrenzung zur Zwischenlagerung dar. Die Endlagerung ist auch dadurch gekennzeichnet, dass bei ihr keine Notwendigkeit von Überwachung, Kontrolle und Reparatur des Endlagers besteht (was bei einer Zwischenlagerung aber der Fall sein muss).

Die Wiederverwertung der Abfälle ist im Falle der Endlagerung normalerweise nicht vorgesehen, es sei denn, man trifft gezielte Vorkehrungen, um die Abfälle bei Bedarf wieder aus dem Endlager holen zu können. In diesem Falle spricht man auch von „rückholbarer Endlagerung“. Überwiegend wird der Begriff „Endlagerung“ im Zusammenhang mit der Lagerung radioaktiver Abfälle – der „atomaren Endlagerung“ – verwendet, er gilt aber grundsätzlich für alle Arten von Abfällen.

Weiteres empfehlenswertes Fachwissen

Inhaltsverzeichnis

Endlagerung konventioneller Abfälle

In Deutschland existieren an vier Standorten Möglichkeiten, konventionelle Abfälle langzeitsicher von der Biosphäre abzuschließen. Es sind dies die Orte Herfa-Neurode (Hessen), Heilbronn (Baden-Württemberg), Zielitz (Sachsen-Anhalt) und Borth (Nordrhein-Westfalen). In Herfa-Neurode und Zielitz werden Stollen von Kalibergwerken als Endlager genutzt. Eingebracht werden können unter anderem folgende Abfälle:

Die jährliche Kapazität dieser Lagerstätten beträgt mehrere hunderttausend Tonnen, die bisher eingelagerte Menge an Giftmüll hat die Menge von 2,5 Mio. Tonnen schon überschritten.

Endlagerung radioaktiver Abfälle

Für die Endlagerung radioaktiver Abfälle hat sich weltweit das Konzept des Einbringens der Abfälle in tiefe geologische Formationen (ca. 300–1.000 m Tiefe) durchgesetzt. Lediglich kurzlebige radioaktive Abfälle (Halbwertszeit < 30 Jahre) werden oberflächennah deponiert.

Die Endlagerung beruht auf dem Mehrbarrierensystem. Es besteht aus verschiedenen Barrieren, die jeweils ihren Anteil an der Rückhaltung der Radionuklide aufweisen, insgesamt aber die Isolation der Radionuklide gewährleisten sollen. Die Barrieren sind technischer und natürlicher Art. Als technische Barrieren gelten beispielsweise Verpackungen der Abfälle und Schachtverschlüsse. Natürliche Barrieren werden durch die das Endlager umschließenden geologischen Formationen mit sehr geringer Durchlässigkeit für Wasser gebildet (der sogenannte einschlußwirksame Gebirgsbereich). Ein Versagen aller Barrieren ist unwahrscheinlich, ein katastrophales Versagen mit plötzlichem Freisetzen großer Mengen radioaktiven Materials kann bei einem extra zum Zwecke der Endlagerung aufgefahrenen Bergwerk ausgeschlossen werden.

Das Hauptproblem der Endlagerung liegt vielmehr im langsamen Transport der endgelagerten Radionuklide mit dem Grundwasser durch Advektion und/oder Diffusion vom Endlager in Richtung Biosphäre. Um auch im Falle eines Eindringens von Wasser ins Endlager einen Rücktransport der Radionuklide in die Biosphäre möglichst klein zu halten, wird versucht, die verschiedenen Barrieren optimal aufeinander abzustimmen. Dennoch zeigen Sicherheitsbetrachtungen, dass über sehr lange Zeiträume ein langsamer Austritt von Radionukliden mit dem Grundwasser aus dem Endlager nicht mit Sicherheit ausgeschlossen werden kann. Wie die Erfahrungen im Falle des Naturreaktors in Oklo zeigen, kann es unter speziellen standortspezifischen Adsorptions- und Desorptionsprozessen an Umgebungsmaterialien zu einer geringen Ausbreitung in der Umgebung (in Oklo in den 2 Milliarden Jahren bis heute weniger als 50m) kommen.

Für die Endlagerung entscheidend sind vor allem die Menge der (hochradioaktiven) Abfälle und der zeitliche Verlauf ihrer Radiotoxizität. Beides hängt wesentlich vom Vorgehen ab: Im Falle der direkten Endlagerung der abgebrannten Brennelemente fallen bei einem großen Kernkraftwerk etwa 50 m³ hochradioaktive Abfälle pro Jahr an (das entspricht etwa einem Würfel mit knapp 4 m Seitenlänge) und im Falle der Wiederaufarbeitung sind es etwa 7 m³ pro Jahr (das entspricht einem Würfel von knapp 2 m Seitenlänge; dafür ist die Menge der schwach- und mittelaktiven Abfälle in diesem Fall allerdings deutlich größer als bei der direkten Endlagerung).

Die Radiotoxizität wiederum nimmt (zum Unterschied von der Toxizität vieler chemischer Abfälle, die zeitlich konstant bleibt) entsprechend der Halbwertszeiten ab. Wenn die Radiotoxizität das entsprechende rechnerische Niveau eines Uranerzlagers vor dem Abbau durch den Menschen erreicht, wird eine mögliche Gefährdung vielfach akzeptiert. Ein fehlendes Risiko liegt dann jedoch immer noch nicht vor. Im Falle der Wiederaufarbeitung, bei der im Wesentlichen nur Spaltprodukte endgelagert werden, wird dies nach größenordnungsgemäß etwa 1000 Jahren erreicht, bei der direkten Endlagerung, bei der auch die langlebigen Stoffe Uran und Plutonium endgelagert werden, dauert das mehr als 1000 Mal länger (> 1 Million Jahre). Es ist anzumerken, dass bei der Wiederaufarbeitung zwischen 0,1% und 1% der langlebigen Nuklide im Abfallprodukt verbleiben. Eine langfristige Endlagerung über die oben genannten 1000 Jahre ist somit auch dort zwingend erforderlich. Diese anhand von Uranerzlagerstätten vorgenommenen Berechnungen weisen allerdings eine große Unsicherheit auf. So kann je nach Art der betrachteten Uranerzlagerstätte ein wesentlich längerer oder auch kürzerer Isolationszeitraum herauskommen. Heute geht man deshalb davon aus, dass für alle Arten radioaktiver Abfälle – mit Ausnahme kurzlebiger Abfälle – ein Isolationszeitraum von mindestens einer Million Jahre benötigt wird. Für diesen Zeitraum ist ein naturwissenschaftlich exakter Nachweis der Dichtheit eines Endlagers jedoch nicht möglich. Diesbezüglich ist man vielfach auf Plausibilitätsaussagen und Indiziennachweise angewiesen.

Planung und Vorgehensweise bei der Endlagerung liegen in der Verantwortung eines jeden Staates, es gibt aber klare international verbindliche Grundanforderungen durch die IAEA. Im Allgemeinen werden die radioaktiven Abfälle in Abhängigkeit von Aktivitätsgehalt und Halbwertszeit der Radionuklide in Gruppen eingeteilt, für die dann jeweils unterschiedliche Regelungen festgelegt werden. Meist wird zwischen schwach-, mittel- und hochaktiven Abfällen unterschieden. In Deutschland unterscheidet man zwischen stark wärmeentwickelnden und nicht beziehungsweise nur gering wärmeentwickelnden Abfällen. Im übrigen besagt die Einteilung der Abfälle nach schwach-, mittel- und hochradioaktiv nicht unbedingt etwas über die Gefährlichkeit der Abfälle aus. Auch schwachaktive Abfälle können eine starke Radiotoxizität aufweisen (z. B. durch alpha-Strahler), die für extrem lange Zeiten isoliert werden muss.

Ein Endlager für hochradioaktive Abfälle ist bisher noch in keinem der 41 Kernenergie nutzenden Staaten in Betrieb, obwohl entsprechende Planungen und Vorarbeiten in vielen Ländern seit etwa vier Jahrzehnten laufen. Aufgrund der geleisteten Vorarbeiten wird die Machbarkeit von vielen der damit befassten Experten als gegeben angesehen, von anderen Experten und Kernenergiegegnern aber nach wie vor bezweifelt. Allein in den vergangenen zehn bis fünfzehn Jahren sind erhebliche neue Probleme aufgetaucht, so z. B. der Umgang mit der Gasentwicklung im Endlager oder Probleme mit dem Nachweis der Langzeitsicherheit.

Für kurzlebige schwach- und mittelradioaktive Abfälle existieren oberflächennahe Endlager (in etwa 5 bis mehrere 10 m Tiefe) in vielen Ländern, z. B. in Frankreich, Großbritannien, Spanien, Tschechien und in den USA.

In einigen wenigen Ländern laufen Forschungsarbeiten zur Abtrennung (Partitioning) der langlebigen Nuklide und Umwandlung dieser durch Neutronenbeschuss (Transmutation) in kurzlebige oder stabile Isotope. Ob und wann diese Arbeiten zu einem Erfolg führen, kann nicht vorhergesagt werden. Allerdings deuten die bisherigen Erkenntnisse darauf hin, dass Abtrennung und Transmutation keine Lösung für die Endlagerproblematik sein werden. Lediglich Art und Umfang der endzulagernden Abfälle werden verändert.

Neben den naturwissenschaftlich-technischen Problemen ergeben sich vor allem auch politische Probleme aus der in der Regel fehlenden Akzeptanz für Endlager durch die Bevölkerung in der betroffenen Regionen, wie es sich beispielsweise bei der Benennung des Salzstocks Gorleben zeigte. Allerdings sind bei diesen Standorten auch schwerwiegende politische Fehler gemacht worden, die nicht gerade die Akzeptanz erhöhen.

Endlagerung von Kohlenstoffdioxid

Hauptartikel: CO2-Sequestrierung

Neben der Endlagerung radioaktiver Abfälle spielt zunehmend die Lagerung oder Speicherung von Kohlenstoffdioxid, meist Kohlendioxid genannt, eine Rolle. Inwieweit die bisherigen Konzepte als Endlagerung bezeichnet werden können, ist wissenschaftlich noch unsicher. Im Zuge der Bemühungen um Klimaschutz und der Verminderung des CO2-Ausstoßes bei der Verbrennung von Kohle wird die Möglichkeit einer dauerhaften Lagerung von Karbondioxid untersucht. Bergwerkshohlräume oder künstliche Kavernen in Salzstöcken haben hierzu keine ausreichende Kapazität. Auch der Raum in ausgebeuteten Gaslagerstätten scheint in Deutschland zu gering. Zumindest entsteht bei der Stromerzeugung aus Kohle hier neben der Reichweitenproblematik auf der Versorgungsseite ein ebensolches auf der Entsorgungsseite. Die ebenfalls in Erwägung gezogene Endlagerung oder Sequestration in tiefen Aquiferen scheint Umweltprobleme zu beinhalten und steht in Widerspruch zu anderweitiger Nutzung dieser Aquifere, zum Beispiel zur Stromerzeugung aus Geothermie. Die Lagerung in den Ozeanen ist noch ein Forschungsgegenstand.

Endlagerung radioaktiver Abfälle in Deutschland

Das deutsche Entsorgungskonzept sieht vor, die Beseitigung aller Arten radioaktiver Abfälle (aus Kernkraftwerken, Medizin und Technik) durch Endlagerung in tiefen geologischen Formationen durchzuführen. Wieweit dies in einem einzigen Endlager oder getrennt für wärmeentwickelnde und nicht oder nur schwach wärmeentwickelnde Abfälle in unterschiedlichen Endlagern geschehen soll, ist umstritten. Für wärmeentwickelnde Abfälle (2007 m³ am 31. Dezember 2001, BfS)besteht ein Endlagerbedarf erst ab etwa 2030 (Abkühlerfordernis von einigen Jahrzehnten, um zu große Wärmeeinbringung zu vermeiden), für nicht wärmeentwickelnde Abfälle (118.841 m³ am 31. Dezember 2001, BfS) schon viel früher.

Mit entsprechenden Forschungs- und Entwicklungsarbeiten wurde frühzeitig begonnen. Im Rahmen des zweiten Atomprogramms der Bundesregierung (1963 bis 1967) wurden dann konkrete Schritte zur Realisierung einer Beseitigung der Abfälle unternommen. Im Salzbergwerk Asse wurden Forschungs- und Entwicklungsarbeiten für die Endlagerung durchgeführt und von 1967 bis 1978 im Rahmen von Versuchs- und Demonstrationsprogrammen auch radioaktive Abfälle eingelagert (siehe dazu den Abschnitt Versuchsendlager Asse). Zur Zeit (Mitte 2006) konzentrieren sich die Überlegungen auf zwei geplante Endlager: Den Salzstock bei Gorleben und das ehemalige Eisenerzbergwerk Schacht Konrad bei Salzgitter.

Der Salzstock bei Gorleben

In Gorleben wurde von 1979 bis 2000 ein Salzstock auf seine Eignung als Endlagerstätte für alle Arten von radioaktiven Abfällen, darunter speziell auch für Brennelemente und hochradioaktive Abfälle, untersucht. Der Standort wurde vor allem aus politischen und regionalwirtschaftlichen Erwägungen festgelegt. Die Erkundung des Salzstockes wurde 2000 auf Veranlassung der damaligen rot-grünen Bundesregierung unterbrochen. Das auf drei bis zehn Jahre angelegte Moratorium soll zur Klärung konzeptioneller und sicherheitsrelevanter Fragen zur Endlagerung genutzt werden. Eine wichtige Frage ist die geologische Sicherheit des Endlagers über mehrere Jahrhunderttausende. So dürfen beispielsweise tektonische Aktivitäten nicht zu einem Eindringen von Grundwasser in den Salzstock führen. Dieses und andere Szenarien können derzeit nicht mit Sicherheit ausgeschlossen werden. Über eine Wiederaufnahme der Arbeiten wird zur Zeit (Mitte 2006) im politischen Raum gestritten.

Siehe dazu den Fachartikel Salzstock Gorleben

Schacht Konrad

Die ehemalige Eisenerzgrube Konrad soll in ein Endlager für nicht oder nur schwach wärmeproduzierende radioaktive Abfälle umgebaut werden. Im Jahr 2002 wurde der Planfeststellungsbeschluss erteilt. Gegen die Genehmigung wurde vor Gericht geklagt; die Klage hatte aufschiebende Wirkung. Am 08. März 2006 wies das Oberverwaltungsgericht Lüneburg die Klage ab und ließ gegen diesen Beschluss keine Revision zu. Das Bundesamt für Strahlenschutz hat vorerst keine vorbereitenden Arbeiten zur Einlagerung begonnen und eine Nichtzulassungsbeschwerde der abgewiesenen Kläger vor dem Bundesverwaltungsgericht abgewartet. Diese Klage wurde abgewiesen und damit hat das Urteil des Oberverwaltungsgericht Rechtskraft erlangt. Nun kann voraussichtlich innerhalb von einigen Jahren mit der Endlagerung begonnen werden.

Siehe dazu den Fachartikel Schacht Konrad

Morsleben

1979 hatte die damalige DDR mit der Nutzung des stillgelegten Salzbergwerks als Endlager für schwach- und mittelradioaktive Abfälle begonnen. Das Endlager wurde im Zusammenhang mit der deutschen Wiedervereinigung vom Bund übernommen. Bis zur Beendigung des Einlagerungsbetriebs im Jahr 1998 wurden insgesamt rund 37.000 m³ radioaktive Abfälle in Morsleben eingelagert. Derzeit läuft das Genehmigungsverfahren für die Stilllegung.

Siehe dazu den Fachartikel Endlager Morsleben

Versuchsendlager Asse

Im März 1964 wurde das Steinsalzbergwerk Asse II stillgelegt und anschließend von der Bundesregierung erworben. Zwischen 1967 und 1978 wurden im sogenannten Forschungsbergwerk Asse im Rahmen von Versuchsprogrammen ca. 124.000 Behälter schwachaktiver Abfälle und ca. 1.300 Behälter mittelaktiver Abfälle eingelagert. Am 31. Dezember 1978 wurde die Genehmigung für die Einlagerung radioaktiver Abfälle unwirksam. In den Nachfolgejahren wurden eine Vielzahl von Experimenten für die Endlagerung in Salz durchgeführt.

Bereits frühzeitig wurden die kritischen Punkte des Endlagers identifiziert [1], sie wurden jedoch von dem Betreiber des Versuchsendlagers und den zuständigen Behörden bestritten. Erst Anfang der neunziger Jahre des vergangenen Jahrhunderts wurden die Gebirgsdeformationen und bekannten Lösungszutritte ins Grubengebäude angemessen bewertet. Seitdem wird das Grubengebäude verfüllt, damit seine Stabilität gewährleistet ist und keine weiteren deformationsbedingten Lösungszutritte auftreten. Seit Anfang 2000 wird versucht, den Nachweis der Langzeitsicherheit für den Abschluss des Betriebes und seine Stilllegung zu erbringen. Dieser Langzeitsicherheitsnachweis ist vor dem Hintergrund der permanenten Lösungszuflüsse und der unzureichenden Standsicherheit des Grubengebäudes bisher nicht gelungen und scheint nach einem Gutachen[2] vom September 2007 nahezu ausgeschlossen. Die zuständigen Ministerien beziehen zur Verbesserung der Sicherheit deshalb seit November 2007[3] in die zu prüfenden Maßnahmen nunmehr auch die Rückholung der mittelradioaktiven Abfälle ein. Die Planungen für den Abschlussbetriebsplan verzögern sich um Jahre und mit einer endgültigen Schließung der Asse ist nicht vor 2017 zu rechnen.

Siehe dazu den Artikel Asse

Endlagerung radioaktiver Abfälle in anderen Staaten

Gegenwärtig sind in 19 der 41 Länder, die Kernenergie nutzen, Endlager für schwach- und mittelradioaktive Abfälle in Betrieb. Zumeist werden dabei Abfälle mit kurzer Halbwertszeit (< 30 Jahre) in oberflächennahe Kammern in bis zu 10 m Tiefe eingelagert. Nach Beendigung des Einlagerungsbetriebs schließt sich eine ca. 300 Jahre lange Überwachungsphase an, während deren die Nutzung des Geländes normalerweise eingeschränkt ist. In Schweden und Finnland gibt es Endlager in Form von oberflächennahen Felskavernen in Tiefen von etwa 70 bis 100 m unter der Erdoberfläche.

Für hochradioaktive und langlebige Abfälle wird weltweit die Endlagerung in tiefen geologischen Formationen angestrebt. In Yucca Mountain (USA) und Olkiluoto (Finnland) sind entsprechende Endlager konkret geplant. In Schweden soll im Jahr 2010 aus zwei vorhandenen Kandidaten ein Standort ausgewählt werden.

Bestehende und geplante Endlager für verschiedenste Arten radioaktiver Abfälle sind in der folgenden (unvollständigen) Übersicht zusammengestellt (siehe auch Liste der Kernkraftanlagen):

Land Name des Endlagers bzw. Region Zustand
ArgentinienSierra del Mediogeplant
BulgarienNovi Hanin Betrieb
ChinaKernwaffentestgelände Lop Norgeplant
FinnlandLoviisain Betrieb
FinnlandOlkiluotoin Betrieb
FrankreichBure (Felslabor)geplant
FrankreichCentre de L'Aubein Betrieb
FrankreichCentre de La Manchestillgelegt
GroßbritannienDriggin Betrieb
JapanRokkashomurain Betrieb
NorwegenHimdalenin Betrieb
SchwedenSFR Forsmarkin Betrieb
SchweizBenkengeplant
SpanienEl Cabrilin Betrieb
Tschechische RepublikBratrstvíin Betrieb
Tschechische RepublikDukovanyin Betrieb
Tschechische RepublikRichardin Betrieb
UngarnPüspökszilágyin Betrieb
USAWIPPin Betrieb
USAYucca Mountaingeplant

Siehe auch

Quellen

  1. Atommülldeponie Salzbergwerk Asse II: Gefährdung der Biosphäre durch mangelnde Standsicherheit und das Ersaufen des Grubengebäudes.- Asse-Gruppe, Hans-Helge Jürgens, Braunschweig, Januar 1979
  2. Tragfähigkeitsanalyse des Gesamtsystems der Schachtanlage Asse in der Betriebsphase, Instituts für Gebirgsmechanik (IfG), Leipzig 2007 Gutachten des IfG Leipzig und zwei weitere Gutachten zum Download auf der Seite von Asse
  3. Gemeinsame Pressemitteilung mit dem BMBF und dem Niedersächsischen Ministerium für Umwelt (NMU) Pressemitteilung auf der Seite des BMU
 
Dieser Artikel basiert auf dem Artikel Endlagerung aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.