30.05.2022 - Helmut-Schmidt-Universität, Universität der Bundeswehr Hamburg

Leistungsstärkstes Dual-Comb-Spektrometer entwickelt

System ebnet den Weg für viele Anwendungen

Forschende der Professur für Lasertechnologie und Spektroskopie sowie vom Max-Planck-Institut für Quantenoptik München und der Ludwig-Maximilians Universität München haben das weltweit leistungsstärkste Dual-Comb-Spektrometer entwickelt, das den Weg für viele Anwendungen in der Atmosphärenforschung und der biomedizinischen Diagnostik, unter anderem auch für die Krebsfrüherkennung, ebnet. Das Verfahren wurde in einem Artikel der Zeitschrift Nature Communications veröffentlicht.

Das Herzstück des Systems besteht aus einer speziellen Art von laseraktivem Medium, einer dünnen Kristallscheibe, und einem Laserresonator, der dieses Medium umgibt. „Der Schlüssel zu unserer Dual-Comb-Laserquelle liegt in ihrer Schlichtheit”, erklärt Teamleiter Univ.-Prof. Dr. Oleg Pronin, Professur für Lasertechnologie und Spektroskopie. „Anstatt zwei voneinander getrennte Laser zu verwenden, die jeweils aktiv stabilisiert und aneinandergekoppelt werden müssen, stammen unsere beiden Laserstrahlen aus demselben Laserresonator, was zu einer hervorragenden gegenseitigen Stabilität führt.” Der Laser mit zwei Ausgängen liefert eine mehr als zehnfach höhere Leistung als alle bisherigen Dual-Comb-Laserquellen. Dies ebnet den Weg für viele Anwendungen in der Atmosphärenforschung und in der biomedizinischen Diagnostik. Anwendungen in der Grundlagenforschung - wie die präzise Vermessung atomarer Spektrallinien in bisher unzugänglichen Wellenlängenbereichen und Kernuhren, den potenziell genauesten Uhren in unserem Universum - kommen dank dieser neuartigen Laserquelle in Reichweite.

Die Dual-Comb-Laserquelle wandelt extrem schnell oszillierende elektrische Felder des Lichts (10^15 Schwingungen pro Sekunde) in den Bereich der Radiofrequenzen (10^6 Schwingungen pro Sekunde) um, wo das Signal mit moderner Elektronik in Echtzeit erfasst werden kann. Dieses Verfahren wird mit zwei überlagerten Pulszügen von Laserpulsen mit leicht unterschiedlichen zeitlichen Abständen realisiert. Es bietet eine hohe Empfindlichkeit und sub-pikometer Auflösung mit schnellen Erfassungszeiten im Millisekundenbereich. Die erreichten Spitzenleistungen im Megawattbereich ebnen mittels Frequenzkonversion den Weg zur hochauflösenden Spektroskopie im tiefen ultravioletten Frequenzbereich - ein Spektralbereich, der von den heutigen Spektrometern nur mit unzureichender Auflösung abgedeckt wird. Im Vergleich zu komplexen, aktiv stabilisierten Lasersystemen vereinfacht die kompakte Größe des Lasersystems Anwendungen wie beispielsweise Spektroskopie der Atmosphäre und hochpräzise Entfernungsmessungen enorm.

Fakten, Hintergründe, Dossiers
Mehr über Helmut-Schmidt-Universität
  • News

    Start-up entwickelt neue Laser für die Biowissenschaften

    Das dreiköpfige Gründerteam von n2-Photonics entwickelt Technologie für Ultrakurzpulslaser. Das Bundesministerium für Wirtschaft und Energie fördert das Start-up mit 800.000 Euro innerhalb des EXIST-Forschungstransfers. „Ultrakurzpulslaser sind aus Forschung und Industrie nicht mehr wegzude ... mehr

    Geruchsminimierung in der Lebensmittelindustrie

    Abluftreinigung ist für lebensmittelproduzierende und -verarbeitende Unternehmen mit teilweise erheblichen Kosten verbunden. Während des Forschungsprojektes "Integrierter Umweltschutz in der Lebensmittelindustrie durch selektive Minimierung von Gerüchen" wurden unterschiedliche Abluftreinig ... mehr

Mehr über MPI für Quantenoptik
  • News

    Molekulare Musik ordentlich aufgedreht

    Empfindliche Tiernasen können Spurenpartikel, wie flüchtige organische Verbindungen, in der Umgebungsluft erschnuppern. Der Mensch dagegen entwickelt dafür innovative Technologien, wie etwa die optische Spektroskopie. Dabei wird mit Hilfe von Laserlicht die molekulare Zusammensetzung von Ga ... mehr

    Ein Nanokelvin-Mikrowellenkühlschrank für Moleküle

    Forscher am Max-Planck-Institut für Quantenoptik haben eine neuartige Kühltechnik für molekulare Gase entwickelt, die es ermöglicht, polare Moleküle bis auf wenige Nanokelvin zu kühlen. Der Trick des Teams in Garching, um diese Hürde zu überwinden, basiert auf einem rotierenden Mikrowellenf ... mehr

    Es tut sich was auf den Nanoteilchen

    Starke elektromagnetische Felder auf Nanopartikeln zu kontrollieren ist der Schlüssel, um auf deren Oberflächen gezielt molekulare Reaktionen auszulösen. Eine solche Kontrolle über Starkfelder erreicht man über Laserlicht. Zwar wurden in der Vergangenheit eine laserinduzierte Entstehung und ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für Quantenoptik

    Die Wechselwirkung von Licht und Materie unter extrem kontrollierten Bedingungen ist das gemeinsame Kennzeichen der fünf wissenschaftlichen Abteilungen am Max-Planck-Institut für Quantenoptik. Die Abt. Laserspektroskopie befasst sich mit der hochpräzisen Vermessung der Spektrallinien von Wa ... mehr

Mehr über LMU
  • News

    Es tut sich was auf den Nanoteilchen

    Starke elektromagnetische Felder auf Nanopartikeln zu kontrollieren ist der Schlüssel, um auf deren Oberflächen gezielt molekulare Reaktionen auszulösen. Eine solche Kontrolle über Starkfelder erreicht man über Laserlicht. Zwar wurden in der Vergangenheit eine laserinduzierte Entstehung und ... mehr

    Frühe Erde: Evolution in der abiotischen Welt

    Vor der biologischen Evolution ereignete sich auf der frühen Erde eine chemische: Aus einfachen abiotischen Molekülen entstanden immer komplexere Netzwerke chemischer Reaktionen und schließlich die ersten Bausteine des Lebens. Wie die biologische beruht auch die chemische Evolution auf Verä ... mehr

    Neue Methode: Karbonat statt Kohlendioxid

    Die Natur kennt mehrere Wege, wie das Molekül Kohlenstoffdioxid (CO2) gebunden werden kann. Der bekannteste ist die Photosynthese. Dabei wird Sonnenlicht benutzt, um CO2 in Biomasse umzuwandeln. Forschungsgruppen weltweit bemühen sich, diesen Prozess nachzuahmen und eine sogenannte künstlic ... mehr

  • q&more Artikel

    Code erkannt

    Der genetische Code codiert alle Informationen, die in jeder Zelle für die ­korrekte Funktion und Interaktion der Zelle mit der Umgebung notwendig sind. Aufgebaut wird er aus vier unterschiedlichen Molekülen, den so genannten ­kanonischen Watson-Crick-Basen Adenin, Cytosin, Guanin und Thymi ... mehr

  • Autoren

    Prof. Dr. Thomas Carell

    Thomas Carell, Jg. 1966, studierte Chemie und fertigte seine Doktorarbeit am Max-Planck Institut für Medizinische Forschung unter der Anleitung von Prof. Dr. Dr. H. A. Staab an. Nach einem Forschungs-aufenthalt in den USA ging er an die ETH Zürich in das Laboratorium für Organische Chemie u ... mehr