Meine Merkliste
my.chemie.de  
Login  

Deep Learning, vorgefertigt

Produkte schneller entwickeln und optimieren

09.10.2019

Mirage Technologies AG

Mirage verspricht neue Deep-Learning-Modelle, welche einfach zu bedienen sind.

Selbstfahrende Autos, automatische Erkennung von Krebszellen, Online-Übersetzer: Deep Learning machts möglich. Das ETH-Spin-off «Mirage Technologies» hat eine Deep-Learning-Plattform entwickelt, die Start-ups und Unternehmen helfen soll, ihre Produkte schneller zu entwickeln und zu optimieren.

Der Name hat etwas Märchenhaftes: Das französische Wort «Mirage» bedeutet  Fata Morgana - oder Trugbild. Der Gedanke hinter dem Namen: «Was du in der virtuellen Welt siehst, ist vielleicht gar nicht echt». Das sagt der ETH-Elekrotechnik-Absolvent Igor Susmelj (27) und bezieht sich damit auf manipulierte Bilder oder Videos in sozialen Netzwerken und Plattformen wie Youtube, die uns als verwirrend echt wirkende Realitäten verkauft werden.

Seine Mission, das Echte sichtbar zu machen, stand am Anfang seines Start-ups. Am Programmierwettbewerb „Hackzurich“ 2018 präsentierte Susmelj mit drei Kommilitonen eine Webanwendung für die Erkennung von Fake-Videos. «Deepbusters» räumte den ersten Preis ab. Dies schien den «jungen Wilden» den Weg in die Selbständigkeit zu bahnen, sie waren in den USA unterwegs und stiessen dort auf grosses (Medien-)Interesse. Allerdings zeigte sich rasch, dass sich mit einer solchen Plattform kaum Geld machen lässt. Also passten sie ihr Geschäftsmodell an.

Vorprogrammierte AI-Bausteine

Mit seinem Deepbusters-Mitstreiter, dem ETH-Informatiker Heiki Riesenkampf, gründete Susmelj im September 2018 das Start-up «Mirage Technologies». Grundlage dafür ist das Know-how in maschinellem Lernen, das sie mit Deepbusters unter Beweis gestellt haben. Mirage verspricht neue Deep-Learning-Modelle, welche einfach zu bedienen sind. Das ETH-Spin-off stellt Entwicklern vorprogrammierte und trainierte «Rockets» zur Verfügung – in der Informatik spricht man dabei von Modellen. Diese Modelle sind in Familien unterteilt, jede kann für spezifische Problemstellungen benutzt werden, beispielsweise das Erkennen von Objekten oder die Superauflösung von Bildern – eine Methode, um niedrig aufgelöste Bildern zu vergrössern.

Die von Mirage zur Verfügung gestellten Rockets wurden einerseits mit Tausenden von Bildern trainiert, sind aber auch lernfähig. Falls kein Modell existiert, das man für eine spezifische Aufgabe benutzen kann, kann es Mirage mittels sogenanntem Transfer Learning mit zusätzlichen Daten füttern. «Da wir unser Modell nicht von Null auf trainieren müssen, brauchen wir viel weniger Daten», erklärt Susmelj. Anwender können die Rockets von Mirage dann mit einem zweizeiligen Code in ihrer bevorzugten Programmiersprache und auf verschiedenen Geräten zum Fliegen bringen.

Warum die Grossen vorne sind

Igor Susmelj und Heiki Riesenkampf sind technologische Entwicklungshelfer. Sie sorgen mit ihrem Produkt dafür, dass die Deep-Learning-Methoden niederschwellig angewendet werden können, ohne dafür auf Tech-Riesen wie Google oder Microsoft angewiesen zu sein. Diese haben in Deep Learning einen riesigen Vorsprung. Denn sie verarbeiten seit langer Zeit sehr viele Daten, mit denen sie ihre Modelle trainieren können. Für komplexe Anwendungen wie etwa die Entwicklung eines fahrerlosen Autos sind Millionen von Bildern und Tausende Stunden Video erforderlich. Zudem erfordert Deep Learning sehr viel Rechenleistung, weil die Parameter oft über mehrere Tage trainiert werden müssen. Mirage greift für seine Modelle auf Open-Source-Daten und auf Forschungsplattformen zurück.

Eine Plattform für Entdecker

Die zwei Jungunternehmer haben bisher viel Zeit, Geld und Energie in Mirage investiert – verdient haben sie damit noch nichts. Beide haben sich mit diversen Jobs über Wasser gehalten – was ganz gut funktioniert, denn: «Im Software-Bereich braucht man keine grosse Infrastruktur und ist örtlich unabhängig», sagt der Luzerner. Zudem können sie Gemeinschaftsarbeitsräume der ETH für Startups und Spin-offs zu günstigen Konditionen nutzen. Wichtiger ist Susmelj aber das Netzwerk, das sich ihm dank der ETH erschlossen hat. «Das ist extrem hilfreich», sagt er.

Natürlich möchte er dereinst den «Studentenmodus» verlassen und mit seiner Arbeit Geld verdienen. Mirage setzt zurzeit auf die Experimentierfreude von Unternehmen: «Viele Firmen möchten neue Technologien ausprobieren», sagt Susmelj. Zurzeit sind auf der Plattform grundlegende Funktionen gratis verfügbar. Auf diese Weise will sich Mirage einen Kundenkreis aufbauen, der die Lösung bekannt macht und später für neue Produkte und Dienstleistungen auch bezahlt.

Fakten, Hintergründe, Dossiers
  • Deep Learning
  • Deep-Learning-Software
  • Produktentwicklung
  • Produktionsoptimierung
  • maschinelles Lernen
Mehr über Mirage Technologies
  • Firmen

    Mirage Technologies AG

    Wir bieten Unternehmen schlüsselfertige Deep-Learning-Modelle, die sie problemlos auf allen Plattformen einsetzen können. mehr

Mehr über ETH Zürich
  • News

    Mit Industriemüll Häuser isolieren

    Das ETH-Spinoff FenX verwandelt Industrieabfall in einen porösen Schaum, der sich zur Gebäudeisolation eignet. Im Gegensatz zu anderen nachhaltigen Dämmstoffen ist dieser nicht brennbar und ausserdem günstig herzustellen. Kaum hat einer die Idee geäussert, schon blasen die vier jungen Männe ... mehr

    Mini-Spektrometer: Kleiner als eine Münze

    ETH-Forscher haben ein kompaktes Infrarot-Spektrometer entwickelt, das sich auf einem kleinen Chip unterbringen lässt. Damit ergeben sich interessante Perspektiven – im Weltall und im Alltag. Ein Handy kann heute alle möglichen Aufgaben erledigen: Fotos und Videos aufnehmen, Nachrichten ver ... mehr

    Eine total verdrehte Batterie

    ETH-Forscher um Markus Niederberger entwickelten aus weichen Materialien eine Batterie, die sich verdrehen, biegen und dehnen lässt. Für Anwendungen in biegsamen Elektronikgeräten ist eine solche Batterie genau die richtige. Die Elektronikbranche setzt immer mehr auf Computer oder Smartpho ... mehr

  • Forschungsinstitute

    ETH Zürich Inst.f. Lebensm.wiss.,Ern.,Ges.

    Die Kernkompetenzen des Labors für Lebensmittelmikrobiologie sind die Detektion und Kontrolle von pathogenen Organismen im Lebensmittel, die Analyse komplexer Mikrofloren und molekulare Mechanismen der bakteriellen Pathogenität. mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.