Meine Merkliste
my.chemie.de  
Login  

Oberflächenchemie



Oberflächenchemie (engl. surface chemistry, surface science) ist ein Teilgebiet der Physikalischen Chemie, bei dem die chemischen und strukturellen Vorgänge untersucht werden, die sich an Grenzflächen, meist fest/gasförmig, abspielen. Dabei werden oberflächensensitive analytische Methoden angewendet, für die in den letzten Jahrzehnten mehrere Nobelpreise vergeben wurden. Da die untersuchten Strukturen im Nanometerbereich liegen, zählt man die Oberflächenchemie zu den Nanowissenschaften.

Inhaltsverzeichnis

Anwendungsgebiete

 

Oberflächenanalytische Methoden werden in der Industrie und in der Grundlagenforschung eingesetzt.

Grundlagen

Als Oberfläche (engl.: surface) ist dabei der Bereich eines Festkörpers definiert, in dem sich die physikalischen und chemischen Eigenschaften (z. B. Struktur, elektronische Eigenschaften) vom Rest (engl.: bulk) unterscheiden, wobei die Abweichung von den Volumeneigenschaften f(x) i. a. exponentiell mit der Entfernung von der Oberfläche x abklingt (proportional zu f(x) = exp( − x)). Das Idealbild einer Oberfläche ist analog zum idealen Festkörper

  • streng periodisch
  • eine unendliche in 2 Raumrichtungen ausgedehnte Anordnung von Atomen oder Molekülen

Bravaisgitter

Eine periodische Anordnung von Atomen oder Molekülen auf einer Oberfläche kann analog zum Festkörper in zwei Dimensionen mit einem Bravais-Gitter beschrieben werden. In 2 Dimensionen gibt es jedoch nur 5 Bravais-Gitter (in drei Dimensionen gibt es 7):

  • quadratisch
  • rechteckig
  • rechteckig innenzentriert
  • rautenförmig
  • hexagonal

Wobei hexagonale oder rechteckig innenzentrierte Strukturen als Sonderfälle der rautenförmigen Struktur mit bestimmten Winkeln angesehen werden können.

Einheitszelle

  Eine Einheitszelle spiegelt die Symmetrie des Bravais-Gitter wider, es besitzt die selben Symmetrieelemente. Auf Grund der Periodizität des Gitters können die Einheitszellen durch einen Translationsvektor \vec R aufeinander abgebildet werden. Die Einheitszellen selbst werden durch linear unabhängige Einheitsvektoren \vec a_1 und \vec a_2 aufgespannt. Dabei gilt:

\vec R = \vec a_1 + \vec a_2

Man kann das Gitter auch in einen anderen Raum mit anderen Basisvektoren \vec a_1^* und \vec a_2^* transformieren. Arbeitet man z. B. mit Beugungsmethoden, misst man die Einheitszelle im reziproken Raum, auch

Die Vektoren der Einheitszelle im Ortsraum können u. U. mittels Rastertunnelmikroskopie ermittelt werden. Die gemittelte Größe der Einheitszelle im reziproken Raum erhält man beispielsweise mit der Beugung langsamer Elektronen (LEED) an der Oberfläche.

Eine spezielle Art der Einheitszelle ist die Wigner-Seitz-Zelle. Ihr entspricht die Brillouin-Zone 1. Ordnung im k-Raum.  

Punkte und Geraden im Gitter

Ein Punkt P(x,y,z) im Gitter wird durch einen Vektor \vec P(x,y,z) vom Ursprung zum Punkt beschrieben. Eine Gerade wird mit einem Vektor beschrieben, der parallel zur Gittergeraden liegt.

Gitterebenen

Wenn ein Einkristall bricht, geschieht das häufig entlang der Gitterebene. Dadurch entstehen Oberflächen, die sich je nach 3-dimensionaler Kristallstruktur und Schnittrichtung in ihrer 2-dimensionalen Oberflächenstruktur unterscheiden. Die Schnittebenen können durch die Schnittpunkten a1,a2,a3 der Ebene mit den Achsen des Koordinatensystems beschrieben werden. Die gebräuchlichere Schreibweise ist allerdings die Angabe der Miller-Indizes h,k,l, die das ganzzahlige Vielfache der reziproken Achsenabschnitte sind. z. B. (111), (110), (100)

Überstrukturen

Überstrukturen sind zusätzliche, größere Strukturen, die sich durch Umordnung oder Adsorption an der Oberfläche bilden. Sie können mit Vektoren a2 und b2 als Vielfache der Basis-Vektoren a1 und b1, durch die Woodsche Nomenklatur oder durch Matrixdarstellung beschrieben werden.

Oberflächenpräparation

Bevor eine Oberfläche im mikroskopischen Maßstab reproduzierbar analysiert werden kann, muss sie von Verunreinigungen befreit werden. Um sie vor weiterer Kontamination zu schützen, wird sie im Ultrahochvakuum (UHV) (p \approx 10^{-10}\,\mathrm{hPa}) gehandhabt. Dadurch wird die Flächenstoßrate ni von auftreffenden Molekülen aus der Gasphase verringert. Diese ist

n_i \approx 2{,}6 \cdot 10^{22} \frac{1}{\mathrm{hPa}} \frac {p}{\sqrt{M \cdot T}}

Mögliche Ursachen für Oberflächenkontamination sind z. B.:

  • Adsorption von Luftmolekülen
  • Wanderung von Teilchen aus dem Probeninneren an die Oberfläche

Methoden zur Oberflächenreinigung

Werkstücke tragen nach der Bearbeitung (z. B. Schleifen, Drehen) im Allgemeinen Rückstände, wie Öle, Staub, Abrieb oder Schleifmittel. Diese Rückstände wirken sich meistens negativ auf die Bearbeitungsschritte aus und müssen daher entfernt werden. Typische Verfahren sind:

  • Oxidation oder Reduktion der Oberfläche: Überführen der Verunreinigungen in flüchtige Verbindungen. Oxidation kann zur chemischen Umwandlung von Adsorbaten führen, die anschließend leichter desorbiert werden. Beispielsweise kann stark an eine Oberfläche gebundenes CO zu CO2 oxidiert werden, das auf Grund seiner chemischen Struktur nur noch schwach gebunden ist.
  • Sputtern mit Argonionen: Beim Sputtern wird die Probe mit Ionen beschossen, die in einem elektrischen Feld beschleunigt werden. Allerdings bilden sich auf dem Substrat mehr oder weniger große „Krater“, die z. B. durch Heizen der Probe geglättet werden können.
  • Tempern (Heizen der Probe): Beim Heizen der Probe auf eine bestimmte Temperatur (ca. 1000 K) kann sich das thermodynamsiche Gleichgewicht einstellen, dabei wird die Oberfläche minimiert, was einer Absenkung der Oberflächenenergie entspricht. Dabei können sich von der Temperatur abhängige Rekonstruktionen oder Strukturen bilden. Diese können in Domänen unterschiedlicher Orientierung vorliegen. Beim Tempern kann es außerdem zu Desorption von Adsorbaten kommen.

Techniken zum Aufbringen von weiteren Schichten

Auf eine Oberfläche können weitere Schichten von Atomen oder Molekülen aufgebracht werden, um die Eigenschaften der Grenzfläche zu modifizieren. Dadurch lassen sich z. B. Halbleiterbauelemente in dreidimensionaler Form in einem integrierten Schaltkreis (IC) unterbringen, weil sie durch die Schichten getrennt werden. Ein in der Grundlagenforschung wichtiges Hilfsmittel ist die Chemisorption von Sondenmolekülen, deren Schwingungseigenschaften z. B. Informationen über die Oberfläche geben. Das Aufbringen der Schichten geschieht i. a. mit einer der folgenden Methoden:

Beispiele für Fragestellungen

  • Elementare Zusammensetzungen von Oberflächen
  • Konzentration von Elementen im Oberflächenbereich
  • Verteilung von Elementen im Tiefenprofil der Oberfläche
  • chemische Bindung von Adsorbaten
  • Oxidationszustand von Oberflächenatomen
  • Adsorptionskinetik
  • Adsorptionsenergie
  • Desorptionskinetik
  • Struktur an der Grenzfläche
  • Elektronische Struktur an der Grenzfläche
  • Schwingungseigenschaften
  • Mechanismen von heterogen katalysierten Reaktionen
  • Modelle für katalytische Reaktionen und Entwicklung von industriellen Katalysatoren

Oberflächensensitive Methoden

Um die Vorgänge an Grenzflächen untersuchen zu können, müssen Methoden verwendet werden, die nur Prozesse in dem Bereich einer Probe „sehen“, der sich in seinen Eigenschaften vom restlichen Festkörper unterscheidet. Dazu werden die Wechselwirkungen von folgenden Wellen/Teilchen mit Materie genutzt:

Strahlung/Teilchen mittlere freie Weglänge im Festkörper/Gas Beispiele
Elektronen klein (Coulomb-Wechselwirkung), abhängig von kinetischer Energie, siehe "Universelle Kurve"
Photonen groß (keine Coulomb-Wechselwirkung) UV-Strahlung, Infrarotstrahlung, Röntgenstrahlung
neutrale Teilchen keine, Umkehrpunkt vor Oberfläche Helium-Atome, Wasserstoff-Moleküle
Ionen klein (Coulomb-Wechselwirkung)
magnetische Felder groß
Wärme groß

Die mittleren freien Weglängen von geladenen Teilchen sind auf Grund von Coulomb-Wechselwirkungen i. a. viel kleiner als die von neutralen. Ein weiterer starker Einfluss ist die kinetische Energie der Teilchen; in bestimmten Energiebereichen können Prozesse angeregt werden, was die mittlere freie Weglänge verringert. Entscheidend für die Oberflächensensitivität einer Methode ist, dass entweder das mit der Probe wechselwirkende oder das detektierte Teilchen oder Welle eine geringe mittlere freie Weglänge in der Materie besitzt. Deshalb ist auch für viele Methoden ein Ultrahochvakuum nötig. Die gewählte Methode hängt dabei von der Fragestellung ab. Die folgende Übersicht soll nur einen Überblick geben. Für mehrere Methoden existieren auch verschiedene ortsauflösende Techniken. Für weitere Beschreibung siehe deren Artikel. Jede der Methoden hat Vor- und Nachteile, die beim Experiment berücksicht werden müssen.

Mikroskopie

Scanning Probe Microscopy (SPM)

 

 

 

Methode Erhaltene Informationen eingesetztes Teilchen/Welle detektierte Größe/Teilchen/Welle ausgenutzter Effekt
Rastertunnelmikroskop (STM) Elektronische Zustandsdichte (LDOS) und Topographie an der Oberfläche im Ortsraum, Überstrukturen Elektronen Tunnelstrom/z-Position der Spitze Tunneleffekt
Rasterkraftmikroskop (AFM) Topographie an der Oberfläche im Ortsraum Schwingende Spitze (Cantilever) Ablenkung eines Laserstrahls (Frequenz-, Phasen- und Amplitudenänderung) Van-der-Waals-Wechselwirkung mit Probe
Nahfeldmikroskopie (SNOM)
Chemisches Kraftmikroskop (CFM)
Magnetkraftmikroskop (MFM)

Elektronenmikroskopie

 

Methode Erhaltene Informationen eingesetztes Teilchen/Welle detektierte Größe/Teilchen/Welle ausgenutzter Effekt
Transmissions-Elektronen-Mikroskopie (TEM) Oberflächenstruktur im Ortsraum, Gleitebenen von Kristalliten auf der Oberfläche Elektronen Elektronen Transmission von Elektronen durch eine dünne Probe
Raster-Elektronen-Mikroskopie (SEM) Oberflächenstruktur im Ortsraum, Gleitebenen von Kristalliten auf der Oberfläche Elektronen Elektronen Abrastern der Probe mit Elektronenstrahl
Raster-Transmissions-Elektronen-Mikroskopie (STEM) Oberflächenstruktur im Ortsraum, Gleitebenen von Kristalliten auf der Oberfläche Elektronen Elektronen Kombination aus TEM und SEM
Röntgenmikroanalyse (XRMA)
Photoemissions-Elektronenmikroskopie (PEEM) Magnetische Domänenstruktur im Ortsraum Zirkular polarisierte Röntgenphotonen Photoelektronen Photoelektrischer Effekt, vergrößerte Darstellung der emittierten Photoelektronen auf einem Leuchtschirm

Feldinduzierte Mikroskopie

 

Methode Erhaltene Informationen eingesetztes Teilchen/Welle detektierte Größe/Teilchen/Welle ausgenutzter Effekt
Feldemissionsmikroskopie (FEM) Abbildung der Struktur von Spitzen, keine atomare Auflösung elektrisches Feld ionisiert Spitzenatome emitierte Elektronen aus der Spitze auf Fluoreszenzschirm Ionisation, Tunneleffekt
Feldionenmikroskopie (FIM) Abbildung der Struktur von Spitzen, atomare Auflösung elektrisches Feld, Bildgas Bildgas mit Fluoreszenzschirm Ionisation des Bildgases, Tunneleffekt
Felddesorption/Feldverdampfung Abbildung der Struktur von Spitzen elektrisches Feld Adatome/Spitzenatome Desorption von Adatomen der Spitze/Verdampfung von Spitzenmaterial
Feldionenmassenspektrometrie Zusammensetzung von Spitzen elektrisches Feld, Bildgas Molare Masse von Spitzenatomen durch Time-of-flight-Massenspektrometer (TOF) Desorption von Atomen der Spitze, Unterschiedliche Flugzeit bei unterschiedlichen Massen im TOF

Spektroskopie

 

 

Bei der Spektroskopie handelt es sich allgemein um ein Verfahren bei dem ein Spektrum erzeigt wird, d. h. eine Intensität wird gegen eine der Energie äquivalenten Größe aufgetragen, z. B. Frequenz.

Elektronenspektroskopie

Bei der Elektronenspektroskopie ist die Energie von Elektronen, diejenige Größe, die gegen die Intensität aufgetragen wird. Es gibt folgende Methoden:

Methode Erhaltene Informationen eingesetztes Teilchen/Welle detektierte Größe/Teilchen/Welle ausgenutzter Effekt
Röntgen-Photoelektronen-Spektroskopie (XPS) Oxidationszustand und Konzentration von Elementen im Oberflächenbereich Röntgen-Photonen Photo-Elektronen Photoelektrischer Effekt
Auger-Elektronen-Spektroskopie (AES) Oxidationszustand und Konzentration von Elementen im Oberflächenbereich Röntgen-Photonen oder Elektronen Auger-Elektronen Auger-Effekt
Ultraviolet-Photoelektronen-Spektroskopie (UPS) Elektronische Struktur Photonen im UV-Bereich Photo-Elektronen Photoelektrischer Effekt
Metastabilen-Einschlag-Elektronenspektroskopie (MIES) Elektronische Struktur Metastabile Heliumatome Auger-Elektronen Abregung der metastabilen Atome an der Oberfläche; Auger-Effekt

Schwingungs-Spektroskopie

 

Methode Erhaltene Informationen eingesetztes Teilchen/Welle detektierte Größe/Teilchen/Welle ausgenutzter Effekt
Infrarotspektroskopie (IR) Spektrum, Schwingungsmoden von Adsorbaten (oft Kohlenmonoxid als Sonde) Infrarot-Photonen Infrarot-Photonen Schwingungsanregung von IR-aktiven Banden
Ramanspektroskopie Spektrum, Schwingungsmoden von Adsorbaten Vis,NIR Laser Rayleigh/Raman-Streuung (Vis,NIR) Schwingungsanregung von raman-aktiven Banden
Elektronen Energieverlust-Spektroskopie (EELS) Spektrum Elektronen Elektronen Anregung von Prozessen im Festkörper: Phononenanregung, Plasmonenanregung, Ionisation

Ionen-Spektroskopie

Methode Erhaltene Informationen eingesetztes Teilchen/Welle detektierte Größe/Teilchen/Welle ausgenutzter Effekt
Ionen-Streu-Spektroskopie (ISS=LEIS) Molare Masse der Oberflächenatome auf der äußersten Lage (qualitativ) niederenergetische Ionen (oft positive Edelgas- oder Alkalimetallionen) gestreute Ionen mit einem Massenspektrometer Elastische Streuung von Ionen an der Oberfläche, Energie- und Impulserhaltung
Sekundär-Ionen-Massenspektrometrie (SIMS) Molare Masse der Atome im Tiefenprofil der Oberfläche (quantitativ) Ionen (oft positive Edelgas- oder Metallionen) Cluster und Fragmente der Oberfläche, gestreute Ionen mit einem Massenspektrometer Sputtern der Oberfläche
Rutherford Backscattering Spectrometry (RBS) Zusammensetzung der Oberfläche hochenergetische Helium-Ionen
Nukleare Reaktions-Analyse (NRA) Zusammensetzung der Oberfläche hochenergetische Ionen oder Neutronen Zerfallsprodukte von Kernreaktionen Kernreaktionen
Sekundär-Neutralteilchen-Massenspektrometrie (SNMS)

Röntgen-Absorptions-Spektroskopie (XAS)

 

Methode Erhaltene Informationen engesetztes Teilchen/Welle detektierte Größe/Teilchen/Welle ausgenutzter Effekt
(Surface) Extended X-Ray absorption Fine Structure ((S)EXAFS=XANES) Informationen über Nahordnung, Bindungslängen, Koordinationszahl durchstimmbere Röntgen-Photonen (Synchrotronstrahlung) Röntgen-Photonen Interferenz von ursprünglichen Photoelektronen und an Nachbaratomen gestreuten Photoelektronen führen zu anderer Wahrscheinlichkeit für Photoelektrischen Effekt
X-Ray Absorption near edge Structure (XANES=NEXAFS) Informationen über Nahordnung, Elektronische Struktur, Oxidationszustand durchstimmbere Röntgen-Photonen (Synchrotronstrahlung) Röntgen-Photonen wie EXAFS aber genauere Auflösung der in Absortionskantennähe
Mößbauerspektroskopie Zusammensetzung, Strukturinformationen, Oxidationszustände, Partikelgröße Gammastrahlung (meist aus 57Co) Gammastrahlung Mössbauereffekt, Dopplereffekt

Weitere Spektroskopiearten

Methode Erhaltene Informationen engesetztes Teilchen/Welle detektierte Größe/Teilchen/Welle ausgenutzter Effekt
Raster-Tunnel-Spektroskopie (STS) Zustandsdichte der Oberflächenregion im Ortsraum Elektronen, Variation von Ort und Tunnelspannung Tunnelstrom Tunneleffekt

Beugung

Methode Erhaltene Informationen eingesetztes Teilchen/Welle detektierte Größe/Teilchen/Welle ausgenutzter Effekt
Beugung niederenergetischer Elektronen (LEED) Oberflächenstruktur im reziproken Raum, Überstrukturen, 2-d-Fernordnung muss vorhanden sein niederenergetische Elektronen gebeugte Elektronen Beugung
Röntgenbeugung (XRD) Gitterstruktur der gesamten Festkörpers im reziproken Raum, 3-d-Fernordnung muss vorhanden sein Röntgen-Photonen gebeugte Röntgenstrahlung Beugung
MEED Monolagen-Wachstum in Abhängigkeit von der Zeit, Fernordnung bei voller Monolage muss vorhanden sein Elektronen gebeugte Elektronen Beugung
Reflection high energy electron diffraction (RHEED) in-situ-Strukturanaylse während Deposition, Fernordnung muss vorhanden sein Elektronen Elektronen Beugung mit kleinem Glanzwinkel

Kinetische Methoden

Methode Erhaltene Informationen eingesetztes Teilchen/Welle detektierte Größe/Teilchen/Welle ausgenutzter Effekt
Temperatur-programmierte Desorption (TPD) Ordnung der Desorptions-Kinetik, Anzahl Teilchen pro Monolage Wärme Desorbierte Oberflächen-Teilchen Desorption bei Temperaturerhöhung

Kombinationen

Bestimmte Strahlungsarten können mehrere Prozesse anregen, die für die jeweilige Methode Vor- und Nachteile bringen kann. Beispielsweise können bei Ionisation durch Röntgenstrahlung gleichzeitig Auger-Elektronen und Photoelektronen entstehen, die sich möglicherweise im Spektrum überlagern und so die Auswertung erschweren. Andererseits werden bei der TEM durch die zusätzliche Emission von Auger- und Photoelektronen, rückgestreute Elektronen, emittierte Partikel und EELS zusätzliche Informationen über die Probe in einer Apparatur gewonnen.

Die "Big Four"

Als die "Big Four" werden die Messmethoden XPS, AES, SIMS und ISS bezeichnet.


Nobelpreise für Entwicklungen in der Oberflächenchemie

 

„für seine Entdeckungen und Forschungen im Bereich der Oberflächenchemie“

  • 1937: Clinton Davisson (US) und George Paget Thomson (UK)

„für ihre experimentelle Entdeckung der Beugung von Elektronen durch Kristalle“

  • 1981: Kai Manne Siegbahn (SE)

„für seinen Beitrag zur Entwicklung der hochauflösenden Elektronenspektroskopie

  • 1986: Ernst Ruska (DE)

„für sein fundamentales Werk in der Elektronenoptik und für die Konstruktion des ersten Elektronenmikroskops

  • 1986: Gerd Binnig (DE) und Heinrich Rohrer (CH)

„für ihre Konstruktion des Rastertunnelmikroskops

„für seine Studien von chemischen Prozessen auf Festkörperoberflächen“

  • 2007: Albert Fert (FRA) und Peter Grünberg (DE)

"für die Entdeckung des Riesenmagnetwiderstands (GMR)"

Verwandte Themengebiete

Siehe auch

Literatur

Bücher

  • G. Ertl, J. Küppers: Low Energy Electrons and Surface Chemistry. 2. Auflage. Verlag Chemie, Weinheim 1985, ISBN 3-527-26056-0 (1. Auflage 1974).
  • Gabor A. Somorjai: Introduction to Surface Chemistry and Catalysis. Wiley, New York 1994, ISBN 0-471-03192-5 (Englisch).

Zeitschriften

  • Surface Science, Elsevier
  • Surface Science Letters, Elsevier
  • Surface Science Reports, Elsevier
  • Applied Surface Science, Elsevier
  • Applications of Surface Science, Elsevier

Vorträge

 
Dieser Artikel basiert auf dem Artikel Oberflächenchemie aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.